

Reactive Impurities in Pharmaceutical Excipients and Their Impact on Drug Stability

AAPS Chicagoland Pharmaceutical Discussion Group December 4, 2014

Rao V. Mantri Bristol-Myers Squibb Company

ACKNOWLEDGEMENTS

- Y. Wu
- J. Levons
- K. Raghavan
- A. Narang
- J. Hemenway
- V. Sadineni
- Y. Quan
- Many other colleagues at BMS

- Background and Context
- Sources, Variability, Speciation and Stability
- Examples of drug incompatibility with excipient impurities
- Mitigation and control strategies

- Excipients are generally multi-component systems
- Some components are added for functionality or processing aid
- These components may be*
 - Necessary
 - Desirable
 - Innocuous
 - Undesirable
- Is the term ' excipient impurity' a misnomer?*
- In this discussion, we define excipient impurities as the components (reactive) that are detrimental to the drug product stability

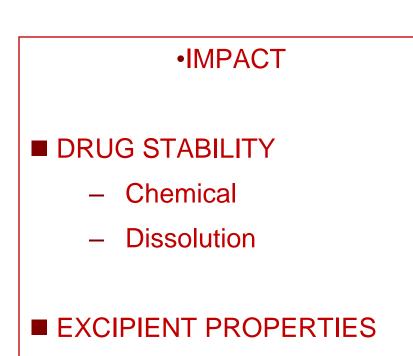
 From a drug/excipient chemical incompatibility perspective, a good portion of reactions are between drugs and 'impurities' in excipients

Relevant not only to drug stability but also robustness

A Sample of Drug Degradation Due to Excipient Impurities

Drug	Impurity	Excipient	Drug Loading (w/w)
BMS-203452	Formaldehyde	PEG 300 /Polysorbate 80	1%
Fluoxetine HCI	Reducing sugars	Lactose	10%
Org-30659	Lactose phosphate	Lactose	0.10%
Compound A	Peroxides	Povidone/Copovidone	2-3%
Compound B	Peroxides	Povidone/Copovidone	2-3%
Raloxifene	Peroxides	Povidone/Copovidone	12.50%
CP448187	Free Radicals/Peroxides	Microcrystalline Cellulose	0.50%
BMS-A	Free Radicals/Peroxide/Reducing Sugars	Microcrystalline Cellulose	0.83%
Vigabatrin	Reducing Sugars, Aldehydes	Microcrystalline Cellulose	-
Irbesartan	Formaldehyde	PEG in Film-coating	Low Strength
Haloperidol	Furfuraldehyde	Lactose	0.575%
Varenicline	Formic Acid/Formaldehyde/Acetic Acid	PEG or Acetate	0.68%
Hydralizine	Aldose	Starch	10%

Wu Y., Levons J., Narang A., Raghavan K. and Rao. V., AAPS Pharm. Sci. Tech., Dec 2011


Predict/determine "soft spots" on the drug molecule

Understand the source and variability of reactive impurities in excipients

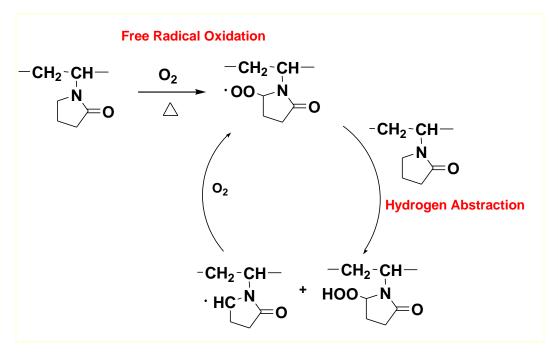
Assess the risk and implement a mitigation strategy

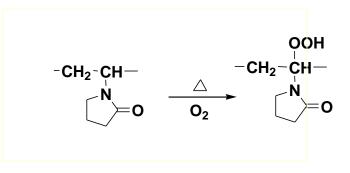
Aldehydes

- Reducing Sugars
- Hydroperoxides
- Organic Acids and Esters
- Metals
- Nitrates, Nitrites
- Free radicals
- Solvents

		Impurity (ppm)							
Excipients	Sources/lot	Glucose	HCHO	Hydrogen peroxide	NO ₂	NO ₃	Monochloroacetate	Heavy metals	Trace metals
Microcrystalline	FMC/1	79.6	4.8	<2	N/A	N/A	N/A	<10	<5 Mg, Mn; <10 Al, Cr, Cu, Fe, Ni, Zn; 10 Ca
cellulose, PH102	FMC/2	59.5	5.1	<2	9.4	23.0	0.9	N/A	N/A
	FMC/3	40.7	4.1	ND	N/A	N/A	N/A	N/A	N/A
Lactose Fast Flo	Foremost	ND	N/A	<2	10.4	12.4	12.0	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al; 15 Ca
Lactose	Foremost/1	ND	1.4	<2	5.1	9.1	1.0	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al, Ca
monohydrate	Foremost/2	ND	ND	<2	5.5	8.0	0.9	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al, Ca
Lactose anhydrous	Quest/1	ND	7.4	<2	5.4	43	0.6	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al; 37 Ca
	Quest/2	ND	3.6	<2	3.7	6.0	0.6	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al; 32 Ca
Pre-gelatinized	Colorcon/1	ND	14.7	<2	14.5	29.2	4.4	<10	<10 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <20 Al, Ca
starch	Colorcon/2	ND	10.9	<2	11.8	22.9	2.3	<10	<10 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <20 Al, 21 Ca
	Colorcon/3	ND	11.1	N/A	N/A	N/A	N/A	N/A	N/A
Povidone	ISP/1	INC	INC	37	2.2	13.6	ND	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al, Ca
	ISP/2	INC	INC	72	1.6	13.1	ND	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al, Ca
Crospovidone	ISP/1	ND	40.8	66	17.2	52.4	ND	N/A	<5 Mn; <10 Al, Cr, Cu, Fe, Ni, Zn; 5 Mg; 10 Ca
-	ISP/2	ND	8.5	69	10.5	30.4	ND	N/A	<5 Mg, Mn; <10 Al, Ca, Cr, Cu, Fe, Ni, Zn
Sodium starch	Roquette/1	-	4.6	<2	279.2	183.1	ND	<10	<5 Cr, Cu, Fe, Mn, Ni, Zn; <10 Al, 79 Ca; 9 Mg
glycolate	Roquette/2	-	1.5	<2	285.6	117.3	135.8	<10	<5 Cr, Cu, Fe, Mn, Ni, Zn; <10 Al, 75 Ca; 8 Mg
Croscarmellose Na	FMC/1	ND	6.5	<2	2.4	23.8	52.2	N/A	N/A
	FMC/2	ND	6.6	<2	1.4	10.3	21.6	<10	<10 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <20 Al, 42 Ca
Magnesium stearate	Mallincrodt/1	ND	3.8	<2	2.1	6.0	ND	<10	<5 Mn; <10 Al, Ca, Cr, Cu, Fe, Ni, Zn;
	Mallincrodt/2	ND	3.7	<2	5.3	12.5	0.7	N/A	N/A
Stearic acid	Crompton	ND	3.1	<2	3.5	6.6	ND	ND	<5 Mn; <10 Al, Ca, Cr, Cu, Fe, Ni, Zn; 30 Mg
Hydroxypropyl	Hercules/1	ND	11.4	13	N/A	N/A	N/A	N/A	N/A
cellulose	Hercules/2	ND	9.4	13	0.9	3.5	ND	<10	<5 Cr, Cu, Fe, Mg, Mn, Ni, Zn; <10 Al, 23 Ca
Silicone dioxide	Degussa/1	ND	6.1	<2	5.8	12.5	ND	N/A	7 Mg; <5 Mn; <10 Al, Ca, Cr, Cu, Fe, Ni, Zn
	Degussa/2	N/A	N/A	<2	1.5	8.7	ND	N/A	200 Al; 480 Ca; 30 Fe; 130 Mg; <5 Mn, <10 Cr, Cu, Ni, Zn

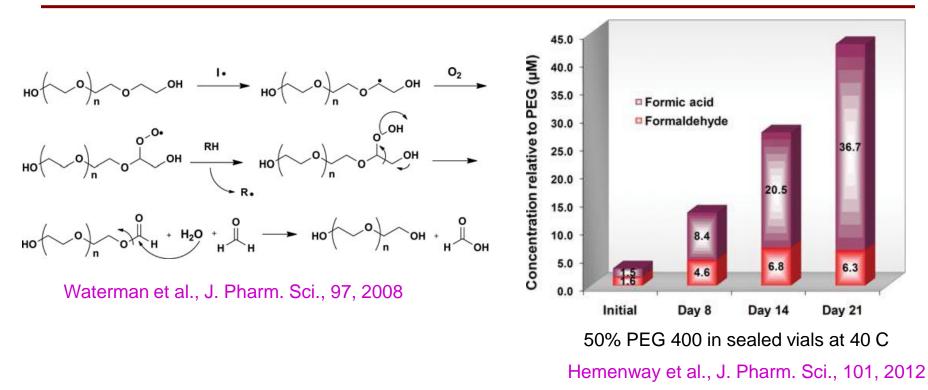
Table II. Profiling of Reactive Impurities in Selected Lots of Pharmaceutical Excipients

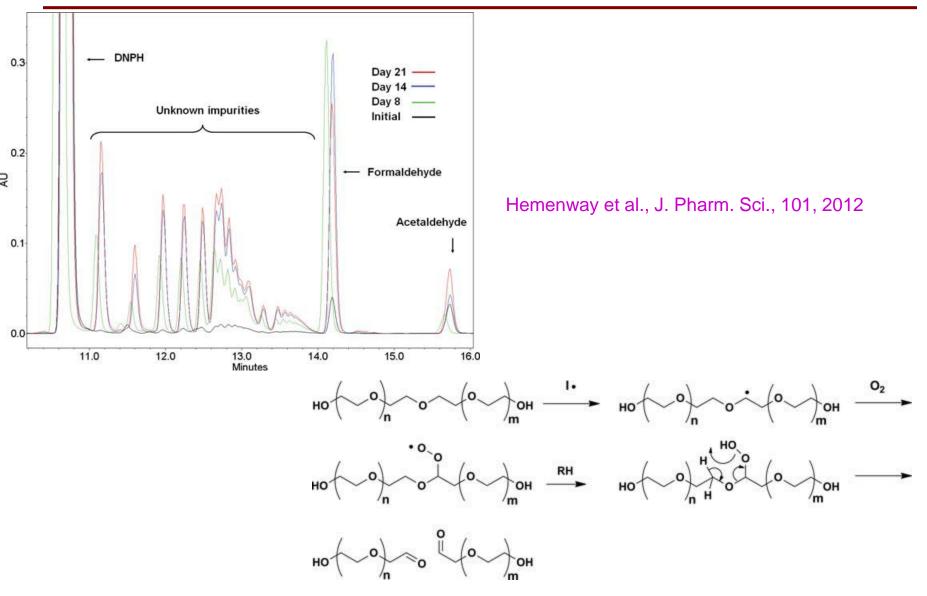

ND not detectable, N/A not available, INC incompatible


Heavy metals and trace metals analysis conducted using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) - Microwave digestion in acid was used for treatment of insoluble excipients

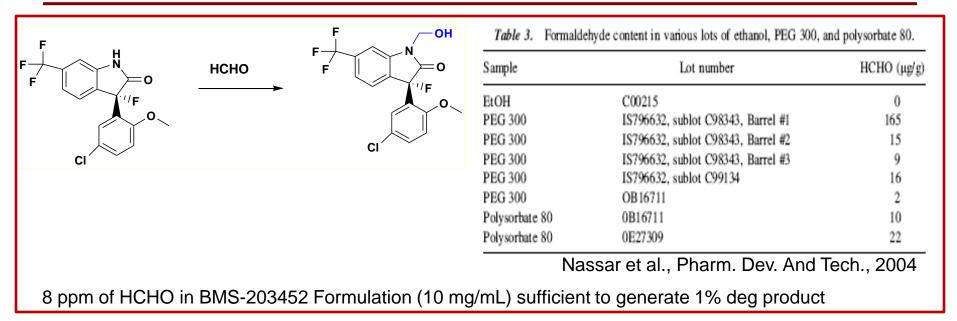
9

Wu et al., Reactive impurities in excipients: profiling, identification and mitigation of drug-excipient incompatibility, AAPS Pharm Sci Tech, 2011

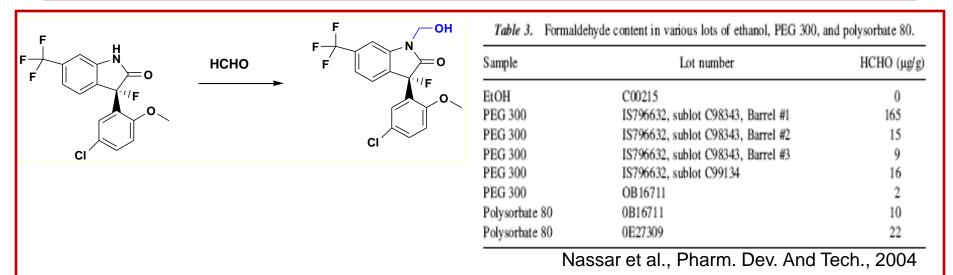

Hydrogen peroxide may be used in the manufacturing process
 Oxidation of PVP leads to hydroperoxides


Tallon et al., J. Appl. Polymer Sci., 107, 2008, 2780

Source of Formaldehyde and Formic Acid in PEGs and/or Pluronics


- In solid dosage forms, formyl esters of PEG may be greater than formic acid
- Relevant for formylation of certain nucleophiles

Source of Aldehydes in PEGs and/or Pluronics



Waterman et al., Pharm. Dev Tech., 7, 2002

Impurities in Excipients: Lot Variability

Impurities in Excipients: Lot Variability

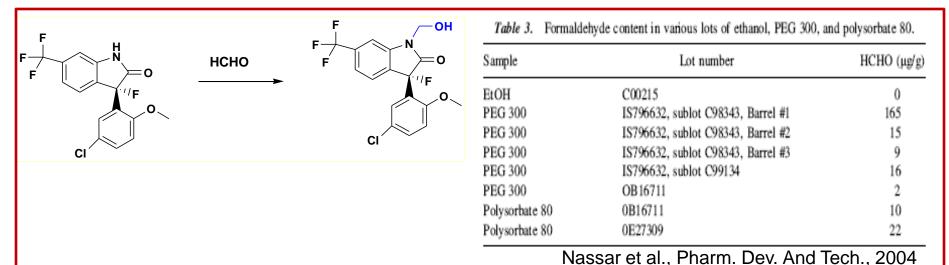

8 ppm of HCHO in BMS-203452 Formulation (10 mg/mL) sufficient to generate 1% deg product

Table 4a. (LF Grade)	Detailed Study of Hydrop	eroxides in HP0
	HPO	
Lot ID	(nmole/g)	RSD (%
3994	890	0.2
4362	440	4.0
4360	500	5.4
4718	750	1.3
5047	110	1.7
5825	140	6.3
6648	200	1.2
6832	210	3.2
9137	220	3.3
7622	270	3.9
9159	450	1.2
7616	220	11.2
8592	150	9.9
8604	100	17
8940	130	9.6

Wasylaschuk et al., 96, J. Pharm Sci., 2007

Impurities in Excipients: Lot Variability

8 ppm of HCHO in BMS-203452 Formulation (10 mg/mL) sufficient to generate 1% deg product

Table 4a. De (LF Grade)	etailed Study of Hydrop	eroxides in HPC
	HPO	
Lot ID	(nmole/g)	RSD (%)
3994	890	0.2
4362	440	4.0
4360	500	5.4
4718	750	1.3
5047	110	1.7
5825	140	6.3
6648	200	1.2
6832	210	3.2
9137	220	3.3
7622	270	3.9
9159	450	1.2
7616	220	11.2
8592	150	9.9
8604	100	17
8940	130	9.6

Wasylaschuk et al., 96, J. Pharm Sci., 2007

Peroxide in Crospovidone				
Lot # H2O2 (ppm)				
73200	197.4			
2C69284	88.2			
OC 29758	109.5			
8K09908	118.1			
G108G	68.7			
2F59164	54.9			
·				

R. Mantri, 12/04/2014

- Hydroperoxide and Hydrogenperoxide
 - Determination is dependent on the assay method
 - Most methods determine total hydroperoxide

- Formic acid and Formyl Esters
 - Methods involve transesterification with ethanol or methanol and Headspace GC
 - Measuring total formyl content
 - Reactivity (Kinetics) of formic acid and formyl ester will be different

		Distribution of I	Hydroperoxides	HPO
Excipient	ID of Lot	% ROOH	% H ₂ O ₂	(nmole/g)
PVP	K12 Acros Lot A0180479 ^a	80	20	2300
	K17 Acros Lot A0199571 ^a	40	60	2800
	K29 Acros Lot A0189374 ^a	60	40	3500
	K29 ISP Lot 05200087543	70	30	3900
	K90 Acros Lot A0159153 ^a	80	20	13000
	K90 ISP Lot 03400121902	80	20	7000
PEG 400	Dow RD0755S4D2	50	50	730
	Dow QJ1155S4D5	60	40	1100
	Dow QH2355S4D3	80	20	3200
PS 80	Croda T4H-1033	100	0	1100
	Croda T4H-1014	100	0	1500
	Croda T4H-1028 ^b	100	0	3900
HPC LF	Hercules Lot 4360	30	70	500
	Hercules Lot 9899	40	60	440
	Hercules Lot 9159	50	50	450
	Hercules Lot 4718	30	70	750
	Hercules EF Lot 9897	80	20	560

Table 7. Distribution of Hydrogen Peroxide and Organic Hydroperoxides in PEG, PS80, PVP, and HPC

"Noncompendial grade.

^bStored under ambient laboratory conditions for approximately 18 months.

Wasylaschuk et al., 96, J. Pharm Sci., 2007

Impurities in Excipients: Impact of Storage

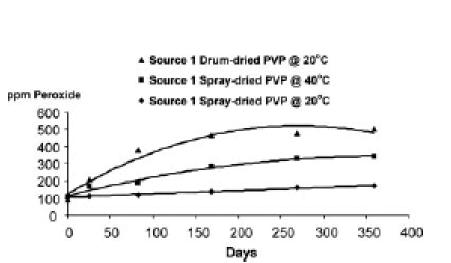

Storage Condition	2.5 Months	28 Months
25°C/11% RH	99.3 ± 11.0	$206.7\pm18.0^*$
25°C/32% RH	87.3 ± 8.3	$34.0\pm3.5^{*}$
25°C/50% RH	71.3 ± 9.5	$7.3 \pm 1.2^{*}$
25°C/60% RH	$44.0\pm 6.0^{*}$	Not detected
40°C/11% RH	$124.7 \pm 12.2^{*}$	$261.3 \pm 40.3^{*}$
40°C/32% RH	$93.3 \pm 14.2^{*}$	$39.3 \pm 4.2^{*}$
40°C/50% RH	73.3 ± 12.1	Not detected
40°C/60% RH	$8.7\pm4.2^{*}$	Not detected

 Table 1. Effect of Storage Conditions (Temperature and Humidity) on Peroxide Concentrations in Povidone Powder

Results represent the average \pm standard deviation of n = 3. Initial peroxide concentration in povidone was 74.7 \pm 3.1 ppm. The results marked with an asterisk (*) were statistically significantly (p < 0.05) different from the initial peroxide concentration using a two-tailed t-test for comparing two sample means with the assumption of unequal variances.

Narang A.S., Rao V.M., Desai D.S., Effects of antioxidants & silicates on peroxides in povidone, J. Pharm. Sci., 2011

Impact of Excipient Manufacturing Process on Impurities: Peroxide Growth in PVP

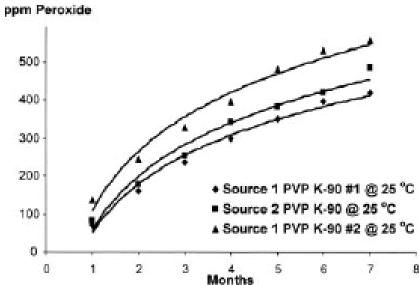
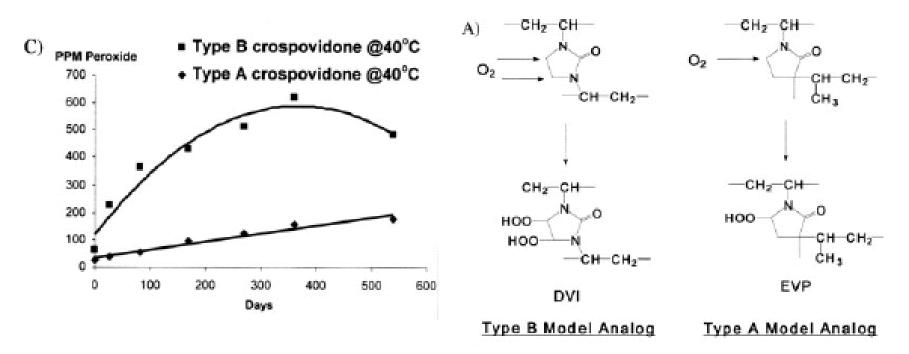
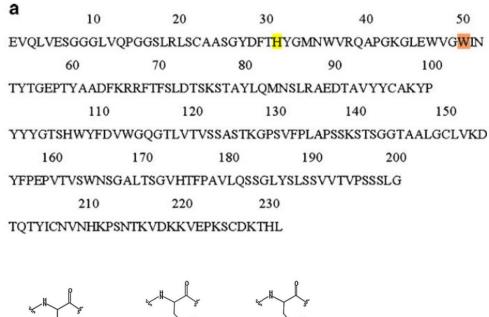



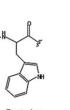
Figure 2 Peroxide buildup in Source 1 Drum-dried PVP at 20 vs. Spray-dried PVP at 20°C and 40°C.

Figure 1 Peroxide buildup in Source 1 and Source 2 PVP K-90 at 25°C.

Drum-dried PVP (involves heating) causes mechanical fracture leading to free radical formation that can initiate the peroxide formation in PVP

Impact of Excipient Manufacturing Process on Peroxide Growth in Crospovidone

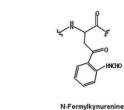



- Crosslinker Type A: N,N-divinyl imidazolidinone (EVP)
- Crosslinker Type B: Ethylidene vinylpyrrolidinone (DVI)
- The rate at which peroxides is dependent on the crosslinking agent used. Type B has twice the number of oxidation sites.
- Note that some vendors claim that they do not use any crosslinkers

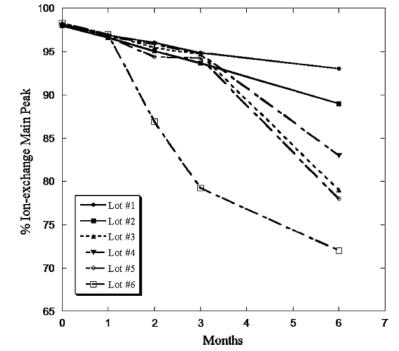
Tallon et al., J. Appl. Polymer Sci., 107, 2008, 2780

Examples of Drug Incompatibility with Excipient Impurities

Example 1:Try in Fab Protein Oxidized by Autocatalytic Rxn of Polysorbate 20 in Formulation


Tryptophan MW 186

Hydroxytryptophan


MW 202 (+16 Da)

Kynurenine MW 190 (+4 Da)

0H 3-Hydroxytryptophan MW 206 (+20 Da)

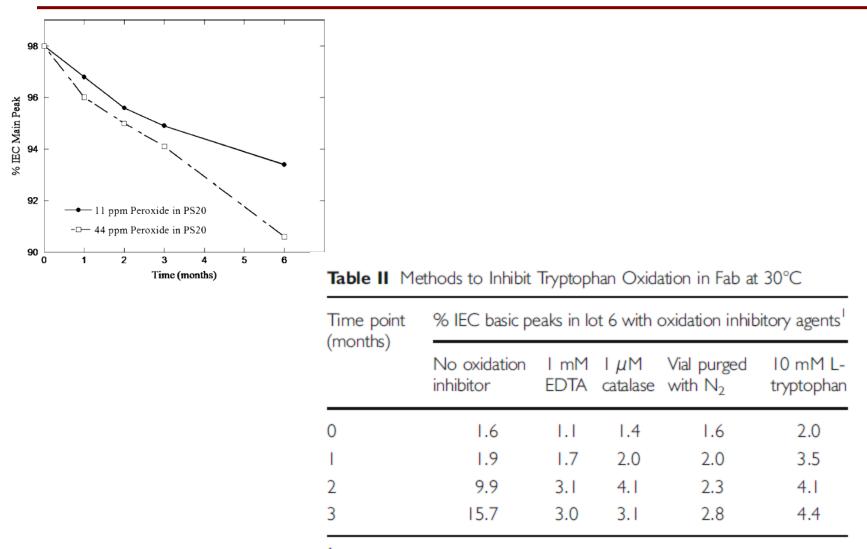
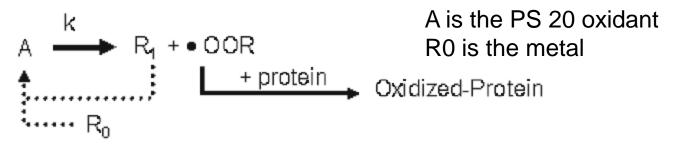

N-Formylkynurenin MW 218 (+32 Da)

Fig. 2 The degradation of Fab drug product stored for 6 months at 30°C as determined by IEC. Fab typically degrades in a linear fashion as shown by Lot I. In Lot 6, a significant increase in degradation was observed between I and 2 months of storage. In other lots (Lot 2–5), a significant increase in main peak degradation was observed between 3 and 6 months of storage.

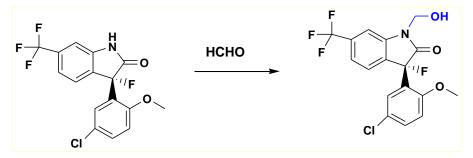
Lam et al., Site-Specific Tryptophan Oxidation Induced by Autocatalytic Reaction of Polysorbate 20 in Protein, Pharm Res. (2011), 28:2543-2555

Example 1:Try in Fab Protein Oxidized by Autocatalytic Rxn of Polysorbate 20 in Formulation

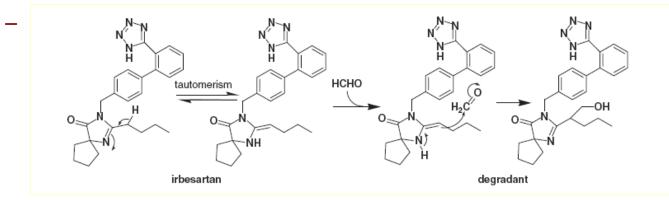


¹ % IEC basic peaks was used as an indicator for Trp oxidation.

Lam et al., Site-Specific Tryptophan Oxidation Induced by Autocatalytic Reaction of Polysorbate 20 in Protein, Pharm Res. (2011), 28:2543-2555

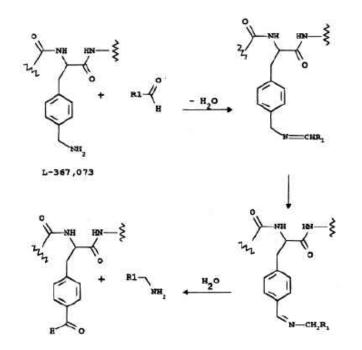

Example 1:Try in Fab Protein Oxidized by Autocatalytic Rxn of Polysorbate 20 in Formulation

- Reaction profile shows autocatalytic in nature
- Reaction with hydrogen peroxide alone or in combination with Ferric Chloride was also not significant
- EPR results detected free radicals in the formulation
- The authors suggest a mechanism involving free radicals
 - Initial rates are slow
 - As more radicals are generated, the reaction rate is increased
 - Subsequent slow down due to consumption of oxidant/free radicals


Lam et al., Site-Specific Tryptophan Oxidation Induced by Autocatalytic Reaction of Polysorbate 20 in Protein, Pharm Res. (2011), 28:2543-2555

- Example 2: Maxipost Inhibitor-Formaldehyde (in polysorbate)
 - Formaldehyde impurity in polysorbate (Solubilizer in lyo product)

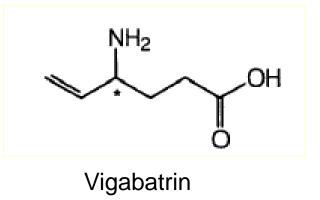
Nassar et al., Pharm. Dev. & Techn., 13, 2008, 393-399

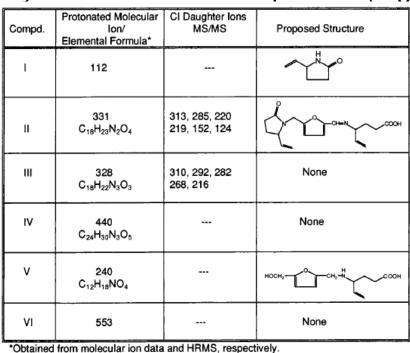

- Example 3: Irbesartan-Formaldehyde (in Film-Coating containing PEG)
 - Formaldehyde impurity in PEG (Plasticizer in Film-Coating Opadry[™] II)

Wang et al., Pharm. Dev. & Techn., 13, 2008, 393-399

Amine Drug Interaction with Reducing Sugar Impurities

- Example 4: Mannitol, being a non-reducing sugar, was deliberately chosen to avoid Schiff-base formation with an Amine Drug.
- Trace level reducing sugar/aldehyde are present in non-reducing sugars!

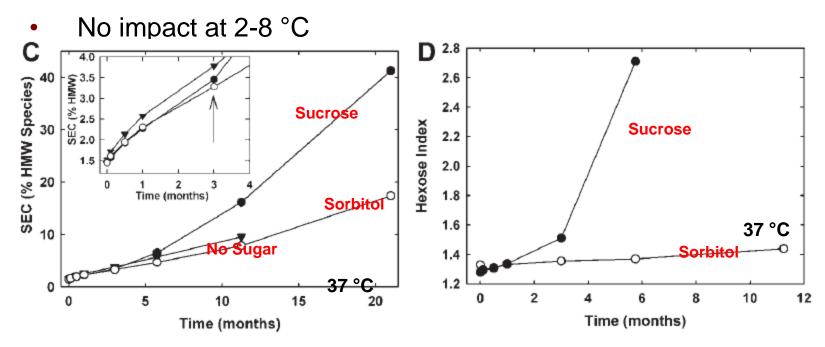



Dubost et al., Pharm. Res., 13, 1996, 1811

Amine Drug Interaction with Reducing Sugar Impurities/Aldehydes

- Example 5: Interaction with reducing sugar impurities (free or end-chain of MCC)
- Maillard products with Microcrystalline Cellulose Impurities (e.g. Furfuraldehyde)

 Image: Compd.
 Protonated Molecular
 Cl Daughter Ions
 Proposed Structure



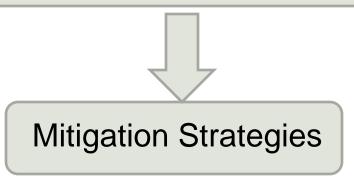
George et al., Drug. Dev. & Ind. Pharm., 20, 1994, 3023-3032

Example 6: Degradation of Excipient under Accelerated Conditions Confounds Drug Stability Interpretation

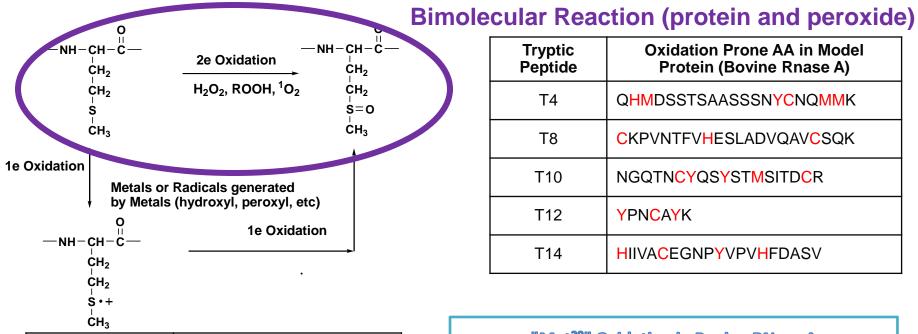
The Effect of Sucrose Hydrolysis of Protein (mAB) Stability at Accelerated Conditions

- Sucrose hydrolysed at 37 °C and the 'impurities' (glucose and fructose) reacted with protein (glycation)
- Glycated protein has higher aggregation rate--hypothesis: change in surface charge

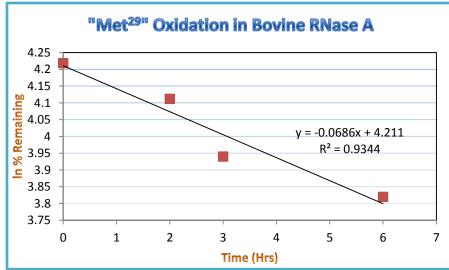
Banks D.D., J. Pharm Sci, 98 (12), 2009, 4501-4510


Additional factors to consider during RAs

- Drug Properties (e.g. reactivity, crystal from, solubility, particle size)
- Low drug to excipient ratio
- Moisture
- pH or micropH
- Temperature



Risk Assessment of Chemical Incompatibilities:


- Degradation 'soft spots' of the drug
- Proactive excipient compatibility studies
- Knowledge of potential reactive impurities in excipients (e.g. nature & source of impurities, type of drug incompatibilities)

Risk Assessment to Predict Impact of Methionine Oxidation due to Polysorbate 80: Kinetics of degradation and impurities level

Residue	+ H ₂ O ₂
Residue	(1:10)
T4	-37.3
Т8	1.1
T10	-4.7
T12	-3.5
T14	0.2

Quan, Sadineni et al., (2011)

R. Mantri, 12/04/2014

Typical Levels of Polysorbates and Pluronics in

Biologics:

Marketed name (Generic name)	Manufacturer	Formulation type / Route of Admin	Surfactant (% w/v)
Orthoclone®	Ortho Biotech	Liquid/ IV	0.02% - PS 80
Reopro®	Lilly	Liquid/ IV	0.001%- PS 80
Rituxan®	Biogen Idec	Liquid/ IV	0.07%- PS 80
Herceptin®	Genentech	Lyophile/IV	0.01%- PS 20
Remicade®	Centocor	Lyophile/IV	0.005%- PS 80
Humira®	Abbott	Liquid/SC	0.1% - PS 80
Avastin®	Genentech	Liquid/IV	0.04%- PS 20
Yervoy™	BMS	Liquid/IV	0.01%- PS 80
Orencia®	BMS	Lyophile/IV	No Surfactant
Orencia®	BMS	Liquid/SC	0.8%-Polox 188
Nulojix®	BMS	Lyophile/IV	No Surfactant

PS: Polysorbate

Polox: Poloxamer (Pluronic)

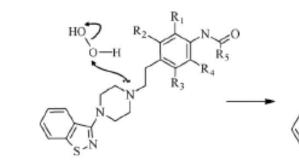
Sadineni et al., (2012)

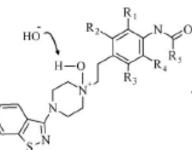
Risk of "Met" Oxidation based on Stressed Studies:

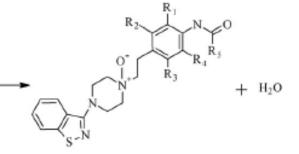
- Two electron oxidation of "Met" due to peroxide contamination from excipients can be reasonably predicted from stressed studies
- A risk based strategy can then be implemented to take appropriate mitigation steps

"Met" Sulfoxide Growth: %/year	Risk Category
0.00 – 1.5	Low
1.51 – 2.0	Medium
2.0 and above	High

MITIGATION STRATEGIES


Modify API Properties, formulation or manufacturing process


- API (salt versus base)
- Stabilizers (e.g. pH-modifiers, anti-oxidants)
 - Excipients
 - Formulations
- Processing


Use protective packaging (moisture, light or oxygen)

Set controls on the raw materials i.e. excipients

Mitigation Strategies Use of Stabilizing Excipients

Formulation	% N-Oxide (Initial)	% N-Oxide 6- weeks at 40C/75%RH
Form.1/H2O2	0.05	0.21
Form.2/H2O2	0.05	0.17
Form.3/H2O2	0.05	0.50
Form.4/H2O2	0.05	0.27
Form.1/H2O2/ Citric Acid	-	-
Form.2/H2O2/ Citric Acid	-	-
Form.3/H2O2/ Citric Acid	0.02	0.01

Lowering of pH (protonation of Piperazine Nitrogen reduces the reactivity

Freed et al., Int. J. Pharm., 2008

- Fluid bed processing of HPC led to increase in peroxide levels and formation of oxidative degradation product*
 - Level of peroxides in HPC increased with time until plateau was reached (irrespective of initial levels)
 - Oxidative degradation product dependent on the processing time
- High shear mixing of oxidation-prone drug with Avicel/Lactose based formulation**
 - Higher mixing time leads to greater degradation
 - Hypothesis: Mechanoradical formation during high shear mixing

```
*Harmon et al., AAPS 2004 Annual Meeting
**Polizzi et al., 2008, 14 (2008)
```

- Not reasonable to expect compendial limits to address the productspecific requirements
- Requires good communication & collaboration with excipient supplier
 - Proper mechanistic understanding necessary to link impurity levels to stability
 - Obtaining excipients with a range on impurities is not feasible
 - Typical batches have smaller range of impurities than the vendor (or compendial) limits
 - 'Spiking' (introducing) of volatile impurities during drug product manufacture is not trivial
 - Analytical methods of trace level impurities is challenging
- Cost of implementation

- Many of the reported drug-excipient incompatibilities are due to impurities in excipients
- Understanding of sources of generation, speciation, analytical methods and stability of these impurities is needed
- Knowledge of excipient impurities along with understanding of drug stability 'soft spots' and dosage form characteristics are essential for building product robustness
- Mitigation strategies can involve:
 - Product design approaches (formulation, processing and packaging)
 - Setting acceptance criteria for impurities in the excipients require strong collaboration between product manufacturers and excipient suppliers