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Abstract 

Particle and granule properties play a key role in the final product quality of pharmaceuticals. 

Thus the identification and monitoring of key chemical and physical parameters is essential 

in the production of pharmaceuticals. The existing off-line methods are generally slow and 

labour intensive.  Near infra-red (NIR) multipoint spectroscopy and image analysis are an 

attractive alternative compared to the traditional methods because they are both non-

destructive and non-interfering allowing the analysis in real time of particles physical and 

chemical properties. 

This research is a preliminary study performed at laboratory scale and aims at developing 

chemometric and imaging algorithms for real time measuring of pharmaceutical chemical and 

physical properties. These algorithms utilised real time NIR multipoint spectroscopy and a 

novel imaging system.  NIR multipoint spectroscopy followed by a regression technique 

(such as PLS) was used to build calibration models to quantify a compound in a small size 

binary granule mixture under both static and dynamic conditions. 

The imaging technology provided key physical properties such as size, shape and texture.  

The Haralick correlation property and the variogram were used to analyse the surface texture 

of particles.  These algorithms allowed the classification of particles by their morphological 

nature under both static and dynamic conditions. 
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1 Introduction 

 

The pharmaceutical and chemical industry is a vital sector in the Irish economy; it represents 

60% of Ireland’s manufacturing exports together with the chemical industry[1].  There are 

over 100 companies specialised in pharmaceutical and chemical production, among them are 

major players such as Pfizer, GlaxoSmithKline and Merck & Co. Inc [2].  The most common 

product in pharmaceuticals is solid dosage forms (tablet or capsule) with solid forms 

accounting for more than 70% of the total pharmaceutical production in the world [3].   

Pharmaceutical solid forms can be amorphous particles or crystals with various physical 

characteristics.  They are a mixture of one or more active pharmaceutical ingredients (APIs) 

and non-active ingredients such as diluents, disintegrants, fillers, binders, lubricants, or other 

ingredients.  Physical and chemical properties of particles and granules can affect the overall 

performance of the powdered mixture at different stages of pharmaceutical manufacturing.  

Due to the high degree of regulation imposed on pharmaceutical manufacturing, the overall 

manufacturing process is divided into processes.  Traditionally, quality assessment tests are 

performed on prepared samples after each manufacturing process in addition to quality tests 

on samples of the final product.   

The United States food and drug administration (FDA) published a guidance document that 

outlines the use of Process Analytical Technology (PAT) [4].  Unlike traditional methods of 

manufacturing, PAT achieves quality by design (QbD) instead of accessing the quality at the 

end-process.  This is performed through using in-line measurement tools of critical quality 

parameters.  In-line measurement methods should be fast, non-destructive and require no 

sample preparation. 
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For real time measurement of chemical properties, NIR spectroscopy is used extensively in 

pharmaceutical manufacturing, while near infra-red chemical imaging (NIR-CI) is considered 

to be a novel method.  NIR spectroscopy calculates an average spectrum from a sample area 

while NIR-CI associates the position of the pixel with its corresponding spectrum producing 

a hyperspectral data cube.  NIR-CI has been used in estimating the uniformity of content 

during blending and granulation processes [5].  

Particle size and shape are critical quality parameters for several processes in pharmaceutical 

manufacturing like pre-mixing/mixing, granulation, drying, milling, roller compaction, spray-

drying, coating and compression [6].  Particle size, shape and surface texture can also affect 

the flow properties of the powder, the dissolution rate and friability.   

There are several real time measurement methods for particle size estimation.  One of the 

most common methods is laser diffraction.  Laser diffraction is based on the theory that the 

particle size is related to the scattering angle of light by the particle.  Spatial filtering 

velocimetry is an example of a chord length measurement tool, it calculates the chord length 

by making the particles flow between two sapphire windows and applying a laser beam from 

one window to measure the shadow length of the particle on the other window.  Imaging 

analysis via a scanning electron microscopy (SEM) can also be used to measure the size of 

particles.   

Concerning the measuring of surface morphology characteristics, a small number of studies 

to date have been dedicated to the analysis of surface morphology during pharmaceutical 

manufacturing.  Laser profilometry and SEM were used to monitor tablet surface roughness 

during the tablet coating process however both techniques were not conducted in-line [7].  

Image analysis using multivariate wavelet texture analysis was used to analyse the surface 
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texture of tablet cores, wet granules and controlled release tablets.  Image analysis of surface 

texture of bulk powder was also performed to estimate particle size [8].     

1.1 Aims and objectives 

 

This work is part of the research project ParticlePro which aims at developing a hybrid real 

time measurement device capable of obtaining chemical and physical information of 

pharmaceutical particles.  Ideally, the hybrid device should measure key chemical properties 

such as moisture content, content uniformity and key physical parameters such as size, shape 

and surface texture.  This will allow the monitoring of several pharmaceutical manufacturing 

operation units such as granulation, drying and milling.  

The aim of this work is to develop chemometric and image analysis algorithms in conjunction 

with a novel multipoint near infra-red spectrometer known as the MultiEye
TM 

and a novel 

imaging system known as the Eyecon
TM

.  The MultiEye
TM

 was used to measure the chemical 

information.  Particles of different compounds were blended at different ratios before using 

the multipoint NIR to assess the content ratios.  Multivariate models were built to predict 

chemical content.  The predictive power of these models was assessed for static and moving 

particles. 

The Eyecon
TM

 system was used to measure physical properties of particles.  It measured the 

size, shape and surface morphology properties.  An image analysis algorithm based on 

thresholding was developed to extract individual particles before performing size and texture 

analysis.  The measurement was performed on static and moving particles.  For the static 

testing, size analysis was performed on different size particles ranging from 100 to 1000 µm.  

For dynamic testing particles of three nominal size categories of size 500, 700 and 1000 µm 
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were fixed on a conveyor belt which was operated at variable speeds.  Particle texture 

analysis was performed on particles of size 700 µm under both static and dynamic conditions.                        

1.2 Summary of thesis outline 

 

Chapter 2: Literature review, giving a general background of different topics related to this 

work and also published information in the field.  This chapter gives a general outlook of the 

pharmaceutical manufacturing process, process analytical technology and the theory behind 

several PAT tools.  It gives a brief overview of the mathematical methods used in conjunction 

with these PAT methods.  

Chapter 3: Materials and methods, this section contains a detailed description of the particles 

used in this study as well as the steps taken to prepare different samples.  The section presents 

the equipment prototypes used in these experiments before illustrating the different 

experimental set up for both static and dynamic conditions.  Finally, it enumerates the 

different steps of the image analysis algorithm used for particle size and texture analysis 

algorithms employed to analyse the surface of particles with preliminary results for surface 

texture analysis.  

Chapter 4: Results and discussion, presents the outcomes of all experiments and discusses the 

different challenges associated with each measurement.  First, the results of measuring 

chemical properties of particles in both static and dynamic conditions using the prototypes 

equipment are presented.  Then the results of particles size analysis and texture analysis in 

static and dynamic conditions are presented.   

Chapter 5: Conclusions, a summary of the novel devices in conjunction with the 

mathematical methods at predicting both chemical and physical properties and the challenges 

associated with static and dynamic monitoring of these particles.  
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Chapter 6: Further work, points out future work that could be explored as part of the research 

conducted in this thesis. 
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2 Literature review 

2.1 Overview of the pharmaceutical manufacturing of solid forms 

 

Pharmaceutical solid forms commonly consist of powder that contains one or more API and 

inactive particles known as excipients.  Tablets are the most common solid form [9].  Tablet 

characteristics such as shape, size, weight, hardness, thickness and dissolution profile 

determine its type and the way they should be taken.  To ensure the desirable tablet properties 

testing is performed after each manufacturing process step. 

The process of making tablets starts with blending the raw materials that consist of APIs and 

non-active materials.  Sometimes the raw materials are milled before the mixing step to 

prevent the formation of powder lumps.  Depending on the desired powder flow property 

required, the blended mixture can be subject to wet or dry granulation. 

In wet granulation the particles in the blend are bound to each other with the help of a binding 

solution forming a larger particle known as a granule.  Drying is always performed at the end 

of the wet granulation step.  Typical wet granulation tools are high shear mixers, fluid bed 

granulators and single or twin screw extruders.  In dry granulation, unlike wet granulation the 

binding of particles is performed through physical compaction forces exerted by a set of 

counter rotating rolls leading to a compact ribbon.  Milling is the next step after granulation 

and it reduces the size of the granule to the desirable one. 

Once the desirable size of the granule is obtained, a conveyor hopper is used to feed a tablet 

compaction system with a powder mix.  Typically the compaction system is composed of the 

feeder that inputs the powder into the tablet die which is then compressed using a punch.  The 

compacted tablet is then discharged from the die.  Then, depending on the type of tablet, the 



7 
 

tablet is coated either with sugar or a thin layer of polymer or gelatine or with enteric coating  

prior to the packaging step [10].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1 Blending 

 

Blending APIs and other inactive ingredients is an ubiquitous unit operation but at the same 

time it is a challenging step in the pharmaceutical manufacturing process.  Powder blend 

uniformity refers to the active ingredient content percentage in the final blend, it is classified 

Required 

Figure 1 General manufacture procedure for making tablets. 

API material feeder Non-active material feeder 

Milling Milling 
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Wet granulation Dry granulation 
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Tablet 
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as a critical process parameter (CPP).  Clearly, the homogeneity of the mixed pharmaceutical 

powder can affect both the downstream unit operations and also the final product quality. 

There are several blending tools used in pharmaceutical manufacturing for mixing different 

ingredients, the most commonly used are tumbling blenders [11].  A v-shaped blender is an 

example of tumbling blender where the mixture is continually separated and mixed while the 

blender is turning around its x-axis.  In this type of blender the mixture is added either layer 

by layer to the blender or side by side.  In general the mixing process is performed due to two 

main factors; the convective mechanism and diffusive mechanism.  The convective 

mechanism is related to movement of groups of particles and thus is affected by the shape of 

the blender.  While, the diffusive mechanism is related to the movement of particles with 

respect to each other thus it is related to the response of particle to the movement of the 

blender.  The convective mechanism contributes to the blending at macro-level while the 

diffusive process contributes to the mixing at micro level [12].   

The time and speed of the blending process is standardised but because of variations of 

ingredients’ chemical and physical properties, sometimes using a set time may lead to 

undesirable powder homogeneity levels.  Particularly, segregation of particles can occur due 

to the difference of mobility among particles.  This difference in mobility is a direct result of 

the difference in particle characteristics namely; size, shape, density, and particle interactions.       

To determine the API content in the mix, the process goes to a standby state to wait for the 

analysis results which is performed by taking samples using a thief probe from the blender.  

The samples are analysed in quality control laboratories using in most cases high 

performance liquid chromatography analysis (HPLC).  HPLC is quite slow in determining the 

content of API in the mix.  In addition, the analysis is performed on a limited number of 

samples which represent a small portion of powder mix that may not reflect the overall 

homogeneity of the blend.  HPLC is performed in laboratories that can be near or far from the 
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production site, adding more delay time to the overall manufacturing process [13].  Recently, 

several studies reported the use of NIR spectroscopy and chemical imaging to determine the 

content uniformity in powder mixes which is faster than HPLC and can be employed to 

obtain in-line measurement of API content [12-16].     

2.2 Process analytical technology and quality by design 

 

Pharmaceutical manufacturing suffers from poor understanding of the different unit 

manufacturing operations compared to other chemical industries [17].  Traditionally the 

manufacturing process is performed in a batch mode instead of a continuous mode.  To 

determine the end points of the process, usually the process is halted and tests are performed 

to determine both if the process reaches the desirable end points and the quality of the blend.  

Measurement tests can take from a few minutes to days, and sometimes the sample is 

transported away from the manufacturing facility.  In addition, each step is seen as black box 

with no record of how the powder properties change, so the ideal end points of the process 

might be reached but the process is not stopped immediately, this can affect the overall 

quality of tablets.  Consequently many pharmaceutical companies spend more money on 

manufacturing itself than in research and development [17].  So the development of 

measurement tools that can be integrated into the production line, which enable real time 

information about the process itself, would reduce cost and time of manufacturing.  It will 

also ease the regulation imposed by different regulation authorities [18].  Real time 

measurement is classified according to the FDA guideline [4] into three categories; at-line in 

which a sample is taken and analysed in the proximity of the production line without 

returning to process stream, on-line where a sample is deviated from the production stream 

analysed and can be returned to the process line, and finally in-line in which the sample 

measurement is performed without removing it from the process line.  This is the aim of 
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process analytical technology (PAT) which has emerged from process analytical chemistry 

(PAC).  PAC as the name suggests analyses the process itself using real time measurement 

tools and chemometrics, it was applied first in the petrochemical industry[19].  PAT  was 

introduced first by FDA  to enhance the understanding and control  of the manufacturing 

process in the pharmaceutical and biopharmaceuticals industry which is a highly regulated 

manufacturing industry[20].  PAT includes a group of instruments that gives more 

information about the processes.  The United States Food and Drug administration (FDA) 

published guidance for the use of PAT which divided the instruments for real time 

measurement and control into the following categories [18]: 

1. Multivariate data acquisition and analysis tools; 

2. Process analysers and sensors; 

3. Process end points monitoring and control; 

4. Tools for information management for ongoing improvement. 

Quality by design (QbD) is often linked to PAT and it aims at using the information provided 

by instruments to numerate process operation pitfalls that can affect the final product quality 

in addition to quality risk management principles and quality control strategies to develop a 

systematic framework for different processes [21].  It is expected that QbD would lead to a 

better assurance of product quality.  The main steps of QbD were described in guideline 

ICHQ8R2 which described six sequential steps[22]: 

 Quality Target Product Profile (QTPP):  This  is the first step of QbD and it enumerate  

the desired quality criteria by considering as described in guide line ICHQ8R2 ; The 

desired product performance/target product profile,  container closure system, 

therapeutic moiety release or delivery and attributes affecting pharmacokinetic 
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characteristics appropriate to the drug product dosage from being developed, Drug 

product quality criteria. 

 Critical Quality Attributes (CQAs):  Describe the permitted limits, ranges, distribution 

for the chemical , physical biological, microbiological properties or any other feature 

to ensure the final quality of the drug 

 Risk Assessment: Linking material attributes and process parameters to Drug Product 

CQA and the risk assessment methods are described in ICH Q9 [22]. 

 Design Space: Describe the complex relationship between different processes and 

CQAs. 

 Control Strategy: Method used to keep the parameters and processes with the 

permitted range, limits and distribution. 

 Product life cycle management and continual improvement: The process can be 

improved by learning from the accumulated experience and adopting new technologies 

and methods while keeping the quality within safe zones imposed by the regulatory 

bodies.  

Near infra-red spectroscopy and microscopic imaging are considered to be PAT tools and 

they may be part of the implementation of QbD principles.  They have been used in several 

studies in conjunction with multivariate methods to monitor several pharmaceutical 

processes[6, 12, 23-28].  

2.3 Near infra-red spectroscopy 

 

Near infra-red spectroscopy (NIRS) is a robust non-intrusive high speed tool that often 

requires no sample preparation.  It is used in a variety of industrial applications.  The NIR 

region is between 780 and 2500 nm and it starts from the visible red light to the mid infrared 
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region [15].  It was discovered by William Hershel in 1800s while he was trying to establish a 

relation between heat radiation and the colour of light.  Hershel concluded that the 

temperature increased near and beyond the red colour [29].  The first application of NIRS 

was in the agricultural field during the late 1960s, Karl Norris of the US department of 

agriculture conducted experiments using NIR on food.  He studied blood in eggs, ripeness of 

melon, moisture in wheat and the hardness of wheat [29].  By the 1990s there was a major 

development in software and hardware, subsequently making NIRS an attractive 

measurement tool in many applications. 

 

Figure 2 The electromagnetic spectrum [30]. 

 

The basic principle of NIR lies within quantum physics.  As matter consists of molecules 

with different strength chemical bonds the energy required to move an electron in a bond to 

another energy level is proportional to the strength of the chemical bond.  This principle is 

used by NIRS to estimate the chemical content and it works efficiently for samples having 

bonds C—H,N—H, or O—H [29].  In NIRS, the surface of an object is radiated with near 

infra-red radiation photons, these photons move the electrons in the atomic bonds to other 

levels of energy.  Depending on the chemical bond strength and physical structure of the 

surface object, the photon will be absorbed or transmitted or reflected. 
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Typically a NIRS system is composed of a light source, which is tungsten-halogen in most 

cases because it is cheap and has a long life span, a monochromator which filters light with 

certain wavelengths, a sample holder and detectors for reflected or transmitted light [31].  

2.3.1 NIRS for pharmaceutical raw material and solid form testing 

 

NIRS has a wide range of applications within the pharmaceutical industry.  .  NIRS has been 

used for raw material testing, product quality control and process monitoring.  The 

pharmaceutical industry is highly regulated and requires quality testing during different 

manufacturing processes starting from raw material to final product.  In fact NIRS appears in 

a number of pharmaceutical guidelines [31]: 

 European Pharmacopoeia 5 (2005). 

 

 EMEA – CPMP/QWP/3309/01 and EMEA/CVMP/961/01 Note for Guidance on the 

use of near infrared spectroscopy by the pharmaceutical industry and the data 

requirements for new submissions and variations, EMEA, London, 2003. 

 

 USP 29 (2006) page 2979. 

 EMEA- CHMP/CVMP/QWP/17760/2009 Guideline on the use of near infrared 

spectroscopy by the pharmaceutical industry and the data requirements for new 

submissions and variations, EMEA, London 2014. 

Good manufacturing process (GMP) guidelines, Chapter 5 state that a pharmaceutical 

company should “provide suitable procedures or measures to guarantee the identification of 

the [raw] material contained in each recipient”[32].  Following the later guideline 

pharmaceutical companies must identify and perform quality tests on the raw material, this is 

called compliance testing.  Laboratory testing of raw materials can be tedious and time 
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consuming, so many pharmaceutical companies adopted a smart system based on NIRS 

which is fast and non-destructive.   

NIRS can also be used to assert the quality of tablets.  It can be used to monitor hardness, 

content uniformity, coating thickness and dissolution rate.  NIRS has been used to detect 

counterfeit products.  In capsules, NIRS can be used to assert the quality of the capsule by 

estimating the moisture content in an empty shell [14].  

 

2.3.2  Real time monitoring of pharmaceutical processes using NIRS 

 

NIRS can be used as an in-line, at-line and on-line measurement tool since it is non-intrusive 

and may require no sample preparation.  Studies investigated the use of NIRS for in-line and 

on-line testing of powder mix homogeneity [15].  It has been established that using NIRS in 

monitoring powder blending is challenging but it is possible and gives a better understanding 

of the process. 

Traditionally, to stop the end point of the drying process, temperature measurement and off-

line analysis of moisture content are used.  Water is a good absorbent for NIR radiation 

because of the O—H bond.  So NIRS can be used to determine moisture content and the end 

point of the drying process.  In addition, NIRS can give more knowledge about the drying 

process itself like the desorption rate.     

Concerning wet granulation, NIRS can measure the moisture content and particle size [31].  

Thus, it can determine the end process point of wet granulation that involves wetting, granule 

formation and drying.  Studies reported that on-line and in-line use of NIRS were successful 

in determining the moisture content and particle size but required additional calculation for 

monitoring particle size growth due to the fact that particle growth and wetting affect the 
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reflection characteristics in a complex manner [15, 31].  Studies showed that NIRS went 

beyond determining the end point of wet granulation by providing more understanding about 

the granulation process such as determination of pseudopolymorphic transitions [31].   

NIRS can be used at-line or on-line for determining the end point for pelletization and film 

coating.  NIRS has also a potential to monitor the tableting and capsule filling process.  It can 

be used as a quality test before packaging.  Recently, a NIRS based system was developed to 

test the quality of all tablets at the packaging step, the system was developed to handle 12,000 

tablets per minute [16]. 
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Table 1 Comparison between NIRS and other spectroscopy methods 

Method Applications Advantages disadvantage 

NIRS - Quality of raw 

material 

- Blending process 

- Drying 

- Granulation 

- Coating 

- Packaging[30] 

- Non-invasive and no 

sample preparation   

- Fast acquisition tool   

- It is classified as “ 

Green Analytical 

Technology  

- The spectrum includes 

physical information of the 

sample. 

- Require a Calibration 

model 

- Low penetration depth 

Raman  -  Blending process 

- Coating thickness 

- Coating 

uniformity 

 - Polymorphic 

transformation 

 

- No sample 

preparation required 

- Provide information 

on a complex mixture 

of component 

complementary to 

NIRS 

- Interfering fluorescence 

can affect the accuracy of 

the result  

- Can be invasive due to the 

strong laser source 

NMR 

 

- Quality of raw 

material 

- Blending process  

- Drug Design [33] 

 

- Non-invasive 

- No Calibration is 

needed for the[34] 

 

 

- Expensive equipment 

- Slow method compared to 

the previous methods 

- Unable to observe Solid 

Hydrocarbon material 

- Can be affected by the 

presence of paramagnetic 

materials[34]. 
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2.4 Chemometric methods for NIRS 

 

Chemometrics was defined as “The art of extracting chemically relevant information from 

data produced in chemical experiments”[35].  The extraction of data is performed through 

mathematical methods mainly statistics, numerical analysis and sometimes through computer 

based laboratory.  Chemometrics took advantage from the increase of storage capacity and 

processing speed of computers in recent years.  This allowed the instantaneous treatment of 

data as well as the control of the process [36].  Chemometrics allowed a better understanding 

of chemical experiments, identification of important parameters that influence the chemical 

experiments and the prediction of experimental results.  It led also to the discovery of new 

analytical tools [37].   

NIRS measurements require the handling of a large amount of data (measuring reflectance at 

different wavelengths) thus it is an ideal application for chemometric methods.  In fact, it is 

considered to be the major factor in the development of chemometrics.  The general 

chemometrics methods applied on NIRS can be classified into two main categories: 

Qualitative analysis methods use NIRS spectra to classify materials.  The classification can 

be performed with or without prior knowledge, in the first case the method is referred to as 

supervised while in the second case it is referred as unsupervised.  Generally, the 

unsupervised methods require a further classification step.  Principal component analysis 

(PCA) is an example of unsupervised methods, it reduces the number of variables which are 

then clustered using hierarchical or non-hierarchical clustering methods.  Supervised methods 

are used more often than unsupervised methods and they classify samples with respect to 

known spectra.  Some of the most common methods are correlation based methods, distance 

based methods, linear discriminate analysis (LDA) and partial least squares discriminant 

analysis (PLS-DA) [16].   

https://www.google.ie/search?rlz=1C1FGGD_enIE499IE499&espv=2&biw=1680&bih=925&q=instantaneous&spell=1&sa=X&ei=_pdcVee8KciI7AazqoDYDA&ved=0CBkQvwUoAA
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Quantitative methods come after the identification of samples and try to quantify the level 

of differences in measurement samples.  For example, quantitative methods applied to NIRS 

spectra can be used in the pharmaceutical industry to determine many physical properties  

such as particle size or hardness of tablets.  Regression methods, artificial neural networks 

and support vector machines are an example of quantitative methods and they try to 

establishing a relation between the spectra of the material and a specific physical property 

[38].    

2.4.1 Pre-processing methods for NIRS  

 

The physical properties of samples of the same chemical content will cause a variation of the 

spectrum.  Physical properties can cause a vertical shift of the spectrum and also the change 

of its original slope (multiplicative effects) [39].  These effects can be removed by pre-

processing methods.  

2.4.1.1 Standard Normal variate 

Standard Normal Variate (SNV) eliminates multiplicative effects by subtracting the 

spectrum 𝑖 by its mean, 𝑥i̅ and dividing it by the spectrum’s standard deviation (eq.1) [18]. 

𝑥𝑆𝑁𝑉_𝑖𝑗 =
(𝑥𝑖𝑗−𝑥�̅�)

√
∑ (𝑥𝑖𝑗−𝑥�̅�)

2𝑁
𝑗=1

(𝑁−1)

                          (eq.1)   

  𝑥𝑆𝑁𝑉_𝑖𝑗 represents the corrected absorbance at wavelength j for spectrum 𝑖 , 𝑥𝑖𝑗 is the 

original absorbance of spectrum 𝑖 at wavelength j.  N is the total number of wavelengths in 

which the absorbance is measured. 
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2.4.1.2 Multiplicative scatter correction (MSC) 

 

The method is based on the idea that the correct or the reference spectrum endured 

multiplicative scatter effects so the resulted spectrum is a multiplication of the reference with 

a multiplicative correction factor plus an additive correction factor (eq.2) where 1𝑁 is a 

vector of ones having length 𝑁 which is the number of wavelength measurements.  To go 

back to the reference, MSC estimates the additive and the multiplicative factors 𝑎 and 𝑏 using 

a linear regression method. To estimate the factors a and b, usually the reference is assumed 

to be the mean spectrum of all spectra.  When estimating the factors, (eq.3) is used to 

calculate the  corrected spectrum [18]. 

𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑎1𝑁  + 𝑏 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑟𝑒𝑓       (eq.2) 

𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
(𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑎1𝑁)

𝑏
       (eq.3)   

2.4.1.3 Derivatives  

 

The simplest way to compute the derivative of a spectrum is finite difference which involves 

taking the difference between two consecutive wavelengths’ absorbance.  This difference 

becomes the new spectral data.  Derivatives remove the multiplicative effect  and also reduce 

peak overlapping [18]. 

2.4.1.4 Savitzky-Golay 

 

Savitzky-Golay is a smoothing and differentiation technique based on the least square 

method.  The method fits a set of consecutive points into a polynomial [40].  The idea behind 

the Savitzky-Golay method is to preserve the shape of the spectrum while removing the 

noise. 
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2.4.2 Pattern recognition methods used in NIRS 

2.4.2.1 Multiple linear regression 

 

A regression with more than one variable is called multiple linear regression.  The 

relationship between the dependent variable 𝑦 and the predictors 𝑥𝑖 can be expressed in (eq.4) 

note ε is an error associate with the relationship between independent and dependent 

variables [18].  

𝑦 = 𝑏 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑖𝑥𝑖 + 𝜀        (eq.4)    

2.4.2.2 Principal component analysis 

 

PCA is an unsupervised method  that reduces the number of data variables, the resulting new 

variables are called principal components and are orthogonal to each other.  They also reflect 

the maximum variance in the data.  The linear combination between principal components 

gives back the original variables (eq.5).  𝑋 is the original data, 𝑇 contains the new data and  

𝑃𝑇 is the loadings or the coefficients,  𝜀 is the error [18].  

𝑋 = 𝑇𝑃𝑇 + 𝜀           (eq.5)    

 

2.4.2.3 Partial least squares regression 

 

When multiple linear regression is used to create models using too many variables, most 

likely the model will fail to predict new data due to overfitting.  Often not all the variables 

account for the variation in the response.  The independent variable that account for the 

variation are called latent variables, partial least square was developed to extract latent 

variables.  Partial least square is a supervised method, basically it is a multivariate regression 

method that can predicts either one dependent variable from multiple independent variables 

in this case the method is called partial least squares 1 or predicts multiple dependent variable 
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from multiple independent variables in this case the method is labelled as partial least squares 

2.  Specifically if the independent variables 𝑋 are decomposed to 𝑇𝑃𝑇where the columns of 𝑇 

are called the latent vector and 𝑌 is decomposed to 𝑈𝑄𝑇.  The goal of PLS is to estimate 𝑇 

and 𝑈 such that 𝑃𝑇𝑃 = 1 and 𝑇𝑇𝑇 = 1 and 𝑇𝑇𝑈 is maximum [41].  The latent variables are 

chosen in a way to minimize the total prediction error [42].  A common approach is to divide 

the data into a training set and a test set.  The training set is used to construct the model 

before applying it to the test set to determine the prediction error this is called cross-

validation.  There are several types of cross validation methods the most common are Leave-

One-Out and repeat (LOO), Leave-N-Objects out and repeat (LNO).  In this work LOO cross 

validation is used, where only one observation is used to test the model constructed from the 

rest of observations, the procedure is repeated for each observation and at the end prediction 

error is calculated [43, 44]  

 

  

 

 

 

2.5 Image analysis 

 

Image analysis is the use of computer algorithms to analyse digital images.  Pixels are the 

smallest image element and are usually stored in computer memory as matrices.  The 

dimensions of the matrices depend on the type of image.  In greyscale images the matrices 

are two dimensional, where each pixel holds a single value while colour images are stored in 

Figure 3 LOO if segment is equal to one sample, LNO if segment constitutes 10-20% of the whole set. 
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three dimensional matrices where each pixel holds three values corresponding to red, green 

and blue.  Typically there are 256 greyscale levels so each pixel can be stored in 8 bits.  For 

colour images each colour has 256 level intensities so the combination of three colours will 

give about 256x256x256=16.7 million possible colours.  The storage size of an individual 

pixel is 24 bits. 

2.5.1 Image pre-processing 

 

Raw images from the camera can include noise or error resulting from the hardware, light or 

the alignment of the camera.  To improve the quality of the images and remove the noise pre-

processing methods are used.  Pre-processing methods can be classified into four categories 

[45]: 

 Pixel brightness transformation corrects the pixel value depending on the position 

or applying a greyscale transformation.  

 Geometric transformations correct the geometric distortion of the image. 

 Local pre-processing methods correct the image by using a few neighbouring pixels 

brightness to estimate a new brightness value for a specific pixel location.  This 

method is also called filtration.  

 Image restoration the changes are applied to the whole image so in this type of pre-

processing a convolution is applied to the entire image. 

2.5.2 Image Segmentation 

 

An image segmentation step is used to numerate objects that have the same properties in the 

same image, however it can be challenging.  It can be seen as mapping each pixel in the 

image into an object in the image so it is considered to be a critical step in the image analysis 

[46].  Segmentation methods can be classified into three categories: 
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 Thresholding based methods which differentiate between pixels depending on their range of 

intensities for example when identifying the background from individual objects a global 

threshold is calculated, if the pixel intensity is below the calculated threshold it is set to be 

zero otherwise it is set to one.  The value of the global threshold can be either specified 

manually by the user by checking the distribution values of pixels’ intensity or estimated 

automatically.  A well-known method for automatic tresholding is Otsu’s method which will 

be described in the next chapter.     

Edge-based segmentation is the second category and involves classifying pixels into edge 

and non-edge pixels by applying an edge filter operator.  In that way pixels that are located 

within the same edge are considered to belong to the same object.  Examples of edge 

segmentation methods are the Prewitt filter and Sobel filter.    

Region based segmentation group pixels in the same region sharing similar attributes [47]. 

2.5.3 Image analysis as a measurement tool in pharmaceutical manufacturing 

 

Image analysis is a non-invasive technique, it can allow the analysis of many pharmaceutical 

sample particles without any sample preparation steps therefore it can give a fast and efficient 

estimation of solid forms’ physical and chemical properties in both powder and tablet forms 

compared to the classical methods.  It can help optimise the formulation development step of 

solid forms and improve understanding of different manufacturing processes.  Image analysis 

can be used in conjunction with hyperspectral imaging that takes images of a sample at 

different wavelengths to estimate the chemical properties.  Image analysis can also be used in 

conjunction with a microscopic camera system, which is usually composed of light 

illumination and a high speed camera to measure physical properties mainly size and shape of 

particles.  For example, during the blending process image analysis of a chemical image of a 

powder mix was used to determine the content percentage of API [48].  In this case, 
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multivariate analysis models were used to analyse the different wavelength chemical images 

and to infer the different compound concentrations [48].  Image analysis of chemical images 

can also be used to measure the homogeneity of tablets and thus can identify counterfeit 

tablets.  The detection of counterfeit tablets was performed using multivariate analysis of 

chemical images of tablets at various wavelengths.  Image analysis of chemical images was 

also used to determine the shape and size of particles [48].   

For the determination of physical properties of pharmaceutical particles, image analysis is 

employed on greyscale images in most cases [26].  Several studies also showed the feasibility 

of in-line measurement of particle physical properties using image analysis during various 

pharmaceutical manufacturing processes.  For example, image analysis of images captured 

with a high speed camera was used to monitor the twin-screw granulation process, the 

approach proved to have a quick response to the change of particle size during the 

granulation process [28].  During in-line measurements, capturing images of moving particles 

can be challenging due to the complex and fast movement of the particles so in many cases a 

sampler or chute is attached to the manufacturing devices to sample several batches for 

measurement.  In addition, as it will be shown later in this study image analysis of a bulk 

powder for direct size determination can be challenging and time consuming.  Several studies 

have used texture analysis of bulk powder together with multivariate analysis to determine 

particle size [8, 49, 50].       

At the tablet manufacturing level, image analysis of digital images was used to determine the 

end point of tablet coating and to check for the uniformity of coating among tablets [51].  

Another study investigated the feasibility of using image analysis for real time quality 

inspection of gelatine capsules and showed an acceptable accuracy of 95% [52].  Finally, 

image analysis was also used in inspecting the quality of the print on a tablet [53]. 
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2.6 Particle size 

 

A particle can be defined as the smallest constitute of a substance.  Particle size, shape and 

surface morphology are key physical parameters in pharmaceutical manufacturing.  Particle 

size affects both pharmaceutical unit operational efficiency and the final product quality.  

Many unit operations such as pre-mixing/mixing, granulation, drying, milling, roller 

compaction, spray-drying, coating and compression are affected by particle size.  Also the 

final product quality is affected by particle size [6]. 

2.6.1 Particle size diameter estimation  

 

There are many ways to quantify the size of particles; the simplest one is finding the 

equivalent circle that has the same projection area as the particle.  The size of the particle is 

then approximated by the diameter of the circle [54].  Other variations involve finding a 

circle that has the same perimeter as the particle.  Particle size can also be quantified by the 

[55]: 

 Diameter sphere that has the maximum or minimum length of the particle.   

 Diameter sphere that has the same volume as the particle. 

 Diameter sphere that has the same surface area. 

 Diameter sphere that has the same weight. 

 Diameter sphere that passes the same sieving as the particle. 

 Diameter sphere having the same sedimentation rate. 
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2.6.2 Feret diameter        

 

Feret diameters includes a set of different sizes estimation based on the distance between two 

parallel plane bounding the particle in different direction (0º, 180º,…).  The size of the 

particle can be the maximum, the minimum or the mean of Feret diameters.  Feret diameter 

90º to the maximum or minimum Feret diameter can also be considered as particle size [54].   

2.6.3 Chord length 

 

Generally chord length is the distance passing through the centre of gravity between two 

points laying at two extremities of the particle.  Similarly to Feret diameters, there are many 

chord lengths for particles depending on the orientation of the particle.  But usually the size 

of the particle is quantified as the maximum or minimum of the chord lengths in different 

particle orientation or the mean of chord length in different orientations [54]. 

2.6.4 Martin diameter 

 

Basically it is defined as the chord length that divides the particle projection area into equal 

half areas.  Martin diameters are also a collection of particle sizes based on the orientation of 

the particle.  So the particle size can be quantified either by the maximum,  minimum or  

mean of the different particle orientations measured [54]. 

2.7 Particle size analysis in pharmaceuticals 

 

There are a number of methods that can be used in pharmaceutical manufacturing for particle 

size analysis, they can be classified into off-line and in-process methods [6].  In off-line 

methods a sample is taken from the production line to perform the analysis while in the in-

process the measurement is performed during production. 
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2.7.1 Sieving analysis  

 

Sieving analysis is a traditional off-line method and it used to be the most common method in 

particle size analysis.  The sieving tool constitutes of many sieves stacked one over the other 

in a decreasing order of mesh size.  When the powder sample is fed into the top sieve, the 

bottom of the sieve is subjected to agitation to help the particles pass through the sieves [56].  

For the particles to pass through the sieve they must have their two largest dimensions 

smaller than the size of the mesh.  At the end, the material in each sieve has particles with the 

approximate same size, so the sieve stack is disassembled and the proportion of powder in 

each sieve is weighted to give the distribution of the sample particle size.    

2.7.2 Laser diffraction 

 

Laser diffraction (LD) can be used as an off-line or in-process method, currently it is a 

popular method in pharmaceutical manufacturing.  It uses information of laser scattering to 

deduce the particle size distribution of the sample as large particles scatter light at small 

angles in comparison with smaller particles which scatter light at bigger angles [57].  The 

method assumes that particles have a spherical shape [6]. 

 

2.7.3 Spatial filtering velocimetry 

 

Spatial filtering velocimetry use chord length as a measure for particle size.  Particles cross a 

laser beam creating shadows over a set of linear arrays of fibres, subsequently a burst signal 

which is proportional to the velocity of the particle is generated.  Simultaneously another 
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pulse signal is generated and so the chord length is estimated by multiplying the velocity with 

the time of the pulse [58].   

2.7.4 Focused beam reflectance measurements 

 

Focused beam reflectance measurements (FBRM) also use the chord length of a particle as a 

size measurement.  It is a laser based system, the laser is focused on a sapphire window 

where particles are located (FBRM ignores particles away from the sapphire window).  Then 

the laser is rotated around the sample, in each step the backscattered light from the particle is 

detected by the laser probe and thus the chord length of the particle is determined.  By the 

end of the measurement, the FBRM constructs a size distribution from the number of 

measured particles. 

2.7.5 Photometric Stereo Imaging 

 

Stereo imaging is based on the change of the illumination angle while keeping viewing at a 

constant position.  So the surface orientation for each pixel is determined and assigned a 

value between 0 and 255 (greyscale image).  Because of the shadow resulted from the 

changing illumination angle, the high brightness values are considered to be particles so the 

volume of the particle is estimated by multiplying the area with the diameter [6, 59].   

2.8 Surface texture analysis 

 

Surface texture is the repeated fine irregularities in the surface of an object.  Usually, surface 

texture is associated with roughness and waviness of the surface [60].  In pharmaceutical 

manufacturing processes, surface texture can affect powder flow and compression behaviour 

in addition to friability, and adhesion properties of manufactured intermediaries and final 

products [61].  The quantification of surface texture can be made through the measurement of 
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surface roughness parameters or through image texture analysis.  Surface roughness 

parameters quantify the heights of different small structures and their occurrences on the 

surface, while image texture analysis applies statistical methods to quantify the difference 

between pixel intensities.  Surface roughness parameters can be measured directly using a 

variety of profilometry methods which can be classified as contact profilometres and non-

contact profilometres.  Contact profilometres is much like the old record player, usually a 

stylus is moved across the studied surface.  The stylus records the vertical elevation by 

transforming its mechanical movement into electric signal which in turn gives roughness 

surface parameters.  Non-contact profilometres as the name suggests analyses the surface 

without interfering with the object’s surface.  For image texture analysis usually an image is 

captured using optical microscopy. 

2.8.1 Atomic force microscopy 

 

Atomic force microscopy (AFM) can be operated in a contact or non-contact mode.  

Generally, it consists of a reflective cantilever attached to a tip.  The cantilever tip deflects 

according to the local surface of the sample and the magnitude of the deflection is registered 

by changes in direction of a laser beam reflected of the cantilever [62].  In contact mode, the 

cantilever tip is in contact with the surface sample, while in the tapping mode the cantilever 

tip is oscillating vertically touching and releasing the surface sample at a constant frequency.  

In non-contact mode, the tip oscillates above the surface and the interactions of molecular 

forces between the surface material and the tip, determine the topology of the surface [63].  In 

all the modes topological maps of the surface texture and surface roughness parameters can 

be drawn.  AFM can measure very fine details down to ~1nm so it is slow compared to the 

other methods and scans only a small portion of the surface.  In addition, AFM in contact 

mode can change the surface texture of the sample.   



30 
 

2.8.2 Laser profilometry 

 

Laser profilometry is classified as a non-contact profilometry method but it is able to quantify 

directly roughness parameters.  It has sensors that read the reflectance of a laser beam applied 

on the material surface.  The sensors then translate the measured light into amplitude 

parameters which in turn provide a measure of several roughness parameters [64, 65].  Laser 

profilometry can cover larger areas than AFM, ranging from ~1mm up to several centimetres, 

it is also the fastest profiling method [66].   

2.8.3 Optical microscopy 

 

The surface of a particle or tablet can be studied using a microscope which captures a 

magnified image of the surface.  Usually, optical microscopy is composed of a light system 

and magnified lenses.  Optical microscopes provide a 2D image of the surface so they do not 

quantify the surface texture or accurately determine the surface topography.  But, it gives a 

fast general scan of the surface texture.  The classification of the surface texture is left to the 

user or to an image texture analysis method.  

2.8.4 Scanning electron microscopy 

 

Scanning electron microscopy (SEM) is similar to optical microscopy in the sense that it 

takes an image of the material surface but in high resolution.  The other difference between 

SEM and optical microscopy is that SEM uses electrons instead of light.  SEM scans the 

surface morphology by directing a fine beam of electrons onto the surface of the material.  

The beam of electrons interacts with the atoms on the surface resulting in the emission of 

electrons which are then collected in the detector to form an image of the surface 

morphology.  So the image describes more accurately the surface texture than optical 

microscopy.  SEM sometimes requires sample preparation for non-conductive material [67].  
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SEM also gives an accurate 2D image of the surface without quantifying the topology of the 

surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

3 Materials and methods 

3.1 Particles used in experiments 

 

The particles employed in this study consisted of microcrystalline cellulose spherical pellets 

known as Cellets
®
 (Pharamatrans Sanaq AG Basel, Switzerland).  Table 1 shows the size of 

different categories of Cellets
® 

while Figure 4 shows an RGB image of different size particles 

taken by the Eyecon
TM

.  In addition, sugar spheres known as pharma-a-spheres
TM

 (Hanns G. 

Werner GmbH, Tornesch Germany) were used which consists of sucrose and corn starch and 

their size is between 100 and 2000 µm, Table  describes the category sizes of the sugar 

spheres.   

To test the ability of the multipoint NIRS via chemometrics algorithms to measure accurately 

the proportions of a binary mixture, samples containing blends of different proportions of 

Cellets
®
 and sugar particles were prepared.  The three particles nominal sizes were 100, 500 

and 1000 µm.  For measuring physical properties, samples were prepared consisting of 

Cellets
®
 with nominal sizes 100, 200, 350, 500, 700 and 1000 μm to perform size analysis 

under bench top conditions.     

Table 2 Cellets
® 

size
 
categories. 

Particle size categories Size(µm) 

Cellets
® 

100 100-200 

Cellets
® 

200 200-355 

Cellets
®
 350 350-500 

Cellets
® 

500 500-710 

Cellets
® 

700 700-1000 

Cellets
® 

1000 1000-1400 
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Table 3 Some common size of sugar spheres. 

Particle size range (µm) Particle size range (mesh ASTM ) 

106-125 100-200 

212-250 70-80 

250-300 50-60 

500-600 30-35 

600-710 25-30 

850-1000 18-20 

 

 

 

 

 

            

  

Particles with a rougher surface morphology were prepared by placing Cellets
®
 700 in a 12 M 

hydrochloric acid (Sigma-Aldrich Buchs SG, Switzerland) solution for 10 minutes.  Then, the 

particles are removed from the solution and left in the lab overnight to dry.  Figure 5 (b) 

shows the resulting surface of chemically etched particles using HCL acid.  In addition, API 

particles with rough texture morphology were used (Innopharmalabs, Dublin, Ireland).  Due 

to intellectual property rights, the name and structure of the active pharmaceutical ingredient 

(API) cannot be shown, it will be denoted as API in this work.  Figure 6 illustrate the shape 

of the API particles which have a spiky surface morphology. 

(a) (b) (c) 

Figure 4 RGB images of different particle categories. (a),( b) and (c) Cellets
®
 of 

nominal size 200, 350 and 1000 µm. 
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Figure 6 Active pharmaceutical ingredient particles with a spiky surface. 

 

3.2 Instruments 

3.2.1 Prototype of the NIRS  

 

A MultiEye
TM

 (Innopharmalabs, Dublin, Ireland) was used, it is a multipoint NIR 

spectrophotometer.  Beside the NIRS software, the system has the following components: 

 Illumination unit of type HL-2000 (Ocean Optics, Dunedin, Florida, USA) consisting 

of a light source (Tungesten halogen), diffusers and illumination optics. 

(a) (b) 

Figure 5 Eyecon
TM

 images of Cellet
®
 700 (a) non-treated and 

(b)treated. 
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 The MultiEye
TM

 central unit containing the spectrometer is based on the VTT’s 

proprietary piezo-actuated Fabry-Perot interferometer technology and Rikola Ltd’s 

four-channel detector technology. 

 The MultiEye
TM

 consists of four probes. 

 A probe (Ocean Optics, Dunedin, Florida, USA) is made of a bundle of seven fibres, 

six fibres transport light from the source to the material and one fibre transports the 

reflected light from the material to the central unit as depicted in Figure 7.   

 

 

 

 

 

 

 

 

 

 

Prior to taking any measurement, the light coming from the light source is blocked to 

measure the dark signal in the full spectral range Id.  Then a white reference (Spectralon, 

Avion, USA) is measured by taking the full spectrum and is denoted I0.  The measurement of 

USB

 The MultiEye system consists of

 MultiEye central unit (spectrometer)

 Ocean Optics light source

 AC/DC power supply

 Probes (and fibers)

 PC

AC/DC power

supply

4-channel MultiEye

Ocean Optics light source
Hopper 

Figure 7 MultiEye
TM

 NIRS prototype system. 
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the reflected light from any sample was collected in the same way as the white reference and 

the reflectance R values were calculated by equation 6 [68]. 

R = (I − Id) ∕ (I0− Id)     (eq.6) 

    

The diffuse reflectance NIR reflectance spectra obtained was then converted into absorbance, 

A, by equation 7.  The distance of each probe from the sample was kept between 0.5-1 mm 

and the spot size is about 500 µm.   

 A = log (1/R)      (eq.7) 

3.2.2 Imaging system 

 

All the images in this study were captured using an Eyecon
TM

, a novel camera based system 

that consists of a camera surrounded by a set of 15 LEDs emitting 1 µs red, green and blue 

light pulses from different angles simultaneously.  The speed of the pulses allows the 

Eyecon
TM

 to capture images of moving particles up to 10 m/s [28].  The illumination is based 

on the principle of photometric stereo imaging which allows the 3D characterisation of 

particles.  The colour distribution on the sample being illuminated by the Eyecon
TM

 camera 

provides topological information which in turn permits the identification of particles’ edges 

for size determination.  The Eyecon
TM

 camera has a field of view of 9 x 6.5mm and a pixel 

size of 6x6 µm.  It can estimate the size of particles in the range of 50 to 3000 µm [28]. 

The Eyecon
TM

 system includes image analysis software based on edge detection of particles.  

The software fits ellipses on particle edges to calculate the two maximum dimensions of the 

particle, then the aspect ratio is calculated and an average diameter is calculated from the two 

maximum dimensions.  Then the distribution of the diameter is constructed from these 

measurements.  For this study, the Eyecon
TM

 image analysis software will not be used instead 
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a novel image analysis strategy based on global thresholding was developed to estimate the 

size of the particles. 

 

 

Figure 8 Eyecon
TM

 device. 

3.3 Samples preparation 

 

In this study different experiments were carried out to test the ability of the MultiEye
TM

 and 

Eyecon
TM

 to measure the chemical and physical properties of particles mentioned earlier.  For 

chemical properties first a calibration standard containing dysprosium, holmium, and erbium 

oxides (Avian Technology, Sunapee USA) was used to check the MutiEye
TM

 for 

measurement in static condition, three samples were prepared containing Cellets
®
 particles, 

sugar spheres and mixture 50% (w/w) of sugar spheres and Cellets
®

 all having a nominal size 

of 500µm.  The mixture sample was prepared by mixing 5g of sugar and 5g of Cellets
®
 in a 

plastic container and mixing the containing horizontally and vertically for about one minute 

in order to obtain a homogenous blend.  The same samples were used to take measurements 

in motion.  To perform the in-line measurement of Cellets
®
 content, 25 samples were 

prepared for building up the calibration model and 10 samples were prepared to perform the 

in-line measurement.  The 25 samples contained 0%, 25%, 50%, 75%, 100% (w/w) of 
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Cellets
®
 for five different nominal sizes that are 100, 200, 500, 700 and 1000 µm with a total 

weight of 20g.  The mixture was obtained in a similar way as the previous samples by 

shaking the plastic container in the vertical and horizontal direction for about 1 min.  The 

other 10 samples contained either sugar or Cellets
®
 with five nominal sizes (100, 200, 500, 

700 and1000 µm) and their weight were 10g each. 

For the physical properties, random samples were taken from Cellets
®
 particles with nominal 

size 100, 200, 350, 700 and 1000 µm.  For dynamic particle size only samples from 100, 500 

and 1000 µm were considered.  To perform texture analysis six samples were prepared 

containing Cellets
®
 700 µm, chemically etched Cellets

®
 700 µm, a mixture of 50% (w/w) of 

Cellets
®
 and chemically etched Cellets

®
, Cellets

®
 1000 µm, API particles and finally a 

mixture of 50% (w/w) Cellets
®
 and API.   

3.4 Experiments 

3.4.1 Measurement of chemical features under static condition 

 

The goal of this experiment is to test the ability of the MultiEye
TM 

to measure chemical 

properties under static conditions.  Prepared samples of Cellets
®
, sugar spheres and their 

mixture were placed under the MultiEye
TM

 probes to take measurements.  The probes were 

0.5~1mm away from the sample and the light spot size was about 500µm.    

3.4.2 Measurement of chemical features under dynamic conditions  

 

To investigate the effect of motion on the MultiEye
TM 

ability to measure chemical and 

physical properties, the movement of particles was simulated via a rotating sample holder.  

The speed of rotation of the holder was estimated to be 80~90 rpm.  A tray containing the 

sample was placed on the centre of a rotating fan so that it rotates at the same speed as the fan 
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as shown in Figure 9.  For this experiment, the probes were fixed away from the centre of the 

tray in the moving stream.   

 

Figure 9 Experiment set up for measuring chemical properties for moving particles. 

3.4.3 In-line monitoring of chemical property using NIR 

 

In this experiment the spectra measured from the MultiEye
TM

 was used to determine the 

proportion of two compounds in a powder mix.  The two compound used in this experiment 

are the sugar sphere and Cellets
®
 both have nominal size 500 µm.  The overall procedure is 

summarised in Figure 10.  The first step was to construct a calibration model so five samples 

were prepared from Cellets
® 

and sugar spheres containing 50% (w/w), 25% of sugar and 75% 

Cellets
®
, 75% of sugar and 25% Cellets

®
,100% Cellets

® 
and 100% sugar spheres.  Samples 

were placed in a stainless steel circular container with an 8 cm diameter and placed on a 

vortex shaker of type Fisherbrand
®
 (Fisher Scientific, Leicestershire England).  Once placed 

on the shaker the container vibrates in a circular motion, in this work the shaker circular 

speed is limited to 500 rpm and the MultiEye
TM

 is used to measure the spectrum of each 

sample.  During the experiment the probes are placed above the centre of the container 0.5~1 
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mm away from the container’s content.  Partial least square is then used to create a model that 

correlates the spectra to the proportion of Cellets
®
.  Once the calibration model is 

constructed, it can be used for the in-line monitoring of proportion measurements.  The in-

line measurement of proportion experiments is performed by placing, 100% sugar or Cellets
®
 

in the vibrator and after some time sugar or Cellets
® 

is added to the vibrator to make 

proportions of 50% (w/w) or 25% (w/w) or 75% (w/w).   

 

 

 

 

 

 

 

 

 

 

 

Figure 10 General steps to in-line measurement of mixture proportions. 
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Figure 11 Measurement of spectrum of mixture particle sample vibrating. 

 

3.4.4 Static particle size and morphology measurements  

 

Samples of Cellets
®
 of different nominal sizes were placed in the field of view of the 

Eyecon
TM

.  Three channel images were captured for size analysis.  The particles were placed 

first in a manner that allowed space between particles and thus the background was apparent 

in the images and then more particles were added to the tray to hide the background resulting 

in images of bulk particles.  

3.4.5 Dynamic particle size and morphology measurements  

 

For the physical property measurement, the particles were fixed onto a conveyor belt 

(Dorner
®
 2200, Hartland, USA) prior to using the Eyecon

TM
 to capture images.  The length of 

the conveyor belt was about 610 mm and width of 44mm, the maximum speed of the 

conveyor belt is estimated to be 23 cm/s and the minimum speed was estimated to be 3 cm/s.  

The focal plane of the Eyecon
TM

  was adjusted to the surface of the belt.  Particles were fixed 

to the surface centre of the conveyor belt in the same field of view as the Eyecon
TM

.    
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Figure 12 Experiment set up for simulating particle movements using conveyor belt. 

 

Another experiment was conducted to capture images of particles during a free fall state as 

shown in Figure 13.  To ensure that the maximum of particles were within the field of view 

of the Eyecon
TM

, a feeder together with a glass window were used to restrict the movement of 

particles.   

 

Figure 13 Free fall state experiment set up. 
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3.5 Particle size using image analysis 

3.5.1 Pre-processing 

 

The image analysis algorithms were implemented using the R  software  [69].  Steps 

conducted to pre-process and segment the three channel images are displayed in Figure 14.  

The three channel images were converted into single greyscale images.  A 9x9 median filter 

was then applied on the greyscale images to remove potential outlying pixels replacing them 

with interpolations of the intensity values of the surrounding eight pixels.      

3.5.2  Image segmentation 

 

The segmentation step was then conducted to isolate objects of interest in each image.  

Typically, the first step in image analysis is thresholding where the foreground and the 

background are labelled resulting in a binary image [70].   

 

3.5.2.1 Otsu’s thresholding algorithm 

 

In this study an automatic thresholding method known as Otsu’s method was employed [52].  

The method starts with calculating the histogram of the greyscale image, then iterates through 

all possible greyscale values to find the optimal threshold that minimises the within class 

variance.  In each iteration, a greyscale value is used to partition the pixels into two groups.  

The variance in each group is calculated as well as the probabilities associated with each 

group before calculating the within class variance.  The within class variance is the weighted 

sum of the two groups variance, the weights are taken as the probabilities of each group.  The 

optimal threshold is the threshold that yields the smallest value of the within class variance. 
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3.5.2.2 Watershed algorithm 

 

The objects in the foreground were then subsequently segmented using the watershed method 

[71].  The watershed algorithm considers the greyscale image as a topographic surface where 

usually the intensities reflect the height of the surfaces but in this case the distance to the 

background reflects the height of the surface.  Therefore prior to  the watershed algorithm, 

the distmap function is used to evaluate the distance to the background for each object, so the 

function output is a contour plot describing the distance to the background and the centre of 

the object will have the highest elevation value.  The watershed algorithm starts flooding the 

objects from their centres with different colours until the colours overlaps or the colour reach 

the background, the result is identified objects.  The objects then can be remunerated as 

shown in Figure 14 (c).   

3.5.3 Particle size measurement and area selection for surface texture analysis 

 

Before measuring the objects’ size and selecting surfaces, all objects in contact with the 

image borders were removed.  These objects are not complete and therefore their inclusion 

can bias the calculated mean particle size.  In this work Cellets
®
 or sugar spheres are circular 

in shape so the diameter of the particle can be measured in one direction this was similar to 

measuring the diameter of the equivalent sphere [72].  There is an additional step for the 

texture analysis which is to select regions around each particle’s centre before applying the 

surface texture analysis.  The area selected is 80x80 pixels corresponding to a region of 480 

µm x 480 µm. 
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3.6 Texture analysis 

 

Statistical surface texture analysis can quantify the spatial distribution of pixel intensities in 

an image.  The statistical methods can be classified into first, second or higher order statistics.  

First order statistics analyse the distribution of pixel intensities without taking into 

consideration their spatial location.  The mean and standard deviation of pixels intensities can 

be considered as first order statistics.  Second or higher order statistics derive statistics from 

the intensity distributions of two or more pixels at specific locations in relation to each other 

[73]. 

3.6.1  Grey level co-occurrence matrix correlation property 

 

Grey level co-occurrence matrix (GLCM) is used extensively to quantify the texture of a 

surface [74] .  In pharmaceutics it has been used to analyse bulk powder surfaces to 

determine particle size and shape and to analyse the surface morphology of  tablets [8, 75].  

The method calculates first the co-occurrence matrix from greyscale images by counting how 

often the grey level intensities occur at a specific distance (d) and orientation (θ).  Figure 15 

is an image consisting of only of two colours:  black and white where black is represented by 

ones and white with zeroes.  So if the co-occurrence matrix is constructed for one step in the -

45º direction it will end up with the co-occurrence matrix as shown in the same figure. 

 

(a) (b) (d) (c) 

Figure 14 Steps of image segmentation algorithm. (a) Greyscale image.  (b) Convert to binary image 

using Otsu’s method. (c)Identify Cellets
®
 centres and estimate size diameter. (d) Select square regions 

around the centre of each Cellets
®
. 
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The co-occurrence matrix is translated to a joint probability distribution Pd,θ.  The number of  

rows or columns corresponds to the number of grey-levels (intensities) in the image under 

study [74].  From the co-occurrence matrix 14 different properties can be calculated [76] 

however typically only the angular second momentum, contrast, correlation, and entropy 

properties are used [74].  In this study, only the spatial correlation property was calculated 

(equation 8) 

                 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝑖∙𝑗𝑃𝑑,𝜃(𝑖,𝑗)−𝜇𝑥𝜇𝑦

𝑛
𝑗=1

𝑛
𝑖=1

𝜎𝑥𝜎𝑦
      (eq.8) 

 

where i and j are indices of the rows and columns of the co-occurrence matrix representing 

the intensities levels.  Note µx, µy, σx and σy are the mean of the rows and columns, the 

Co-occurrence matrix  

          

  

  

  

  

  

        

        

        

        

        

  

  

  

  

  

  

0 

0 

1 

1 

Two colour 6x6 pixel image 

One step -45º 

direction 

i 

j 

0 1 1 0 1 1 
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Figure 15 Co-occurrence matrix construction from two colour image. 
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standard deviation of the rows and standard deviation of the columns respectively of the co-

occurrence matrix.  The plot of the correlation property against the distance step reflects the 

structure of the surface where the slope increases with an increase in the roughness of the 

surface.   

3.6.2 Variogram 

Variograms give a description of how the data are related over distance 𝑘 and direction 𝜃.  

Generally, variograms are characterised by the sill which represents the maximum value of 

the variogram, the range which is the distance where the variogram value becomes constant 

and the nugget which represents the variability at small distances.  Variograms can be defined 

as the expectation, denoted E[…], of the difference value squared between two locations 𝑥𝑖  

and 𝑥𝑖+𝑘 separated by a distance of k in a given direction (eq.9) [77].   

𝑉𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚 =
1

2
𝐸[(𝑥𝑖 − 𝑥𝑖+𝑘)2]       (eq.9)   

As far as surface texture is concerned, it is indicated by the variogram at the origin, rough 

texture will have a higher slope at the origin while a smoother surface will have a lower 

gradient at the origin.  In this study the variogram function for different surface textures is 

calculated using the variog function which is a built in function in the GeoR library in the R 

package [78]. 

 

 

 

 

Figure 16 Surface morphology of (a) Smooth particle and (b) Rough particles. 

 

(a) (b) 
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Figure 17 (a) Variogram function and (b) Haralick correlation property of two particle surface texture shown in 

the previous figure.  

 

Figure 16 is two greyscale images of two different surface textures of two particles.  The first 

one has smooth surface and the second one has rough surface.  Figure 17 shows the 

variogram function and Haralick correlation property corresponding to the two surfaces, the 

variogram of the smooth surface are smaller than the variogram of the rough surface in each 

lag distance.  Haralick correlation property graph of both smooth and rough texture starts at 

the same point and decreases at different rates (the slope of the rough texture is higher than 

the smooth texture). 

3.6.3 Autocorrelation function 

 

The autocorrelation function described in equation 10 can assess the amount of periodicity as 

well as finesse/coarseness of the image by analysing and correlating all the pixel intensities 

(n).  The autocorrelation function starts at one and it decreases at different rates depending on 

the structure of the surface.  It decreases at a slow rate with the increase of pixels distance for 

an object image with a smooth texture.  On the other hand, for object images with rough 

texture, the slope rate increases because of the difference of intensities over a short distance.  
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                                                   (eq.10) 

 

3.6.4 Sobel operator and texture analysis 

 

To isolate details of surface structure of different particles, an edge based method can be 

applied.  Sobel operator is an edge detection segmentation method and it can be employed to 

extract the structure of the surface morphology.  The Sobel operator is based on a two matrix 

operators; one is used to perform a convolution operation with the greyscale image in the 

horizontal direction and the other in the vertical direction.  The two convolution operators 

give two images showing the edge in the horizontal and vertical directions.  A final image is 

reconstructed from the two using equation 11. 

 𝐹𝑖𝑛𝑎𝑙_𝑖𝑚𝑎𝑔𝑒 = √𝑖𝑚𝑎𝑔𝑒ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
2 + 𝑖𝑚𝑎𝑔𝑒𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

2       (eq.11) 

Figure 18 (a) and (b) shows surface texture of a smooth Cellets
®
 and it corresponding texture 

features extracted using the Sobel operator and surface texture of a chemically etched 

Cellets
®
 obtained from the sample preparation in section 3.1.  The variograms of the edge 

based image of a smooth Cellets
®
 and chemically etched Cellets

®
 are shown in Figure 19, in 

this case the difference between the two variograms is more apparent than the variogram of 

the original surface, this suggests that analysing the textural feature of surfaces leads to a 

better classification than analysing the original surface.  

𝜌(𝑘) =
∑ (𝑥𝑡 − �̅�)(𝑥𝑡+𝑘 − �̅�)𝑛−𝑘

𝑡=1

∑ (𝑥𝑡 − �̅�)2𝑛
𝑡=1
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Figure 18 Surface texture after applying the Sobel operator on (a) Smooth Cellets
®
 and (b) chemically etched 

Cellets
®
. 

 

(a) 

(b) 
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Figure 19 Variogram of edge based image in the previous figure. 
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4 Results and discussions 

4.1 Chemical properties 

4.1.1 NIR Calibration trial 

 

For this study, the MultiEye
TM

 prototype was tested using a calibration standard containing 

dysprosium, holmium, and erbium oxides (Avian Technology, Sunapee USA).  These 

experiments consisted of four probes attached to the MultiEye
TM

.  The probes were not in 

contact with the calibration standard and were approximately ~0.5-1 mm away from the 

sample.  Table 2 presents the settings of this experiment.  Note the wavelength range of 1515 

to 2295 nm with a measurement taken every 5 nm thus a total of 118 measurements were 

recorded.  The spectrum generated for each probe is an average of five complete wavelength 

scans.  In each scan the absorbance measurement was performed sequentially by averaging 

1000 measurements.  Hence the total number of measurements was 5000.   .   

Table 2  Settings for the NIR calibration trial. 

Wavelength range 1515 nm-2295 nm 

Step size 5 nm 

Sampling per 

wavelengths 

1000 

Number of scans 5 

 

Figure 20 shows the resulting spectra of the four probes of the MultiEye
TM

 prototype, all the 

spectra have peaks at the same wavelength as the reference spectrum but with different values 
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of absorbance because of baseline shifts.  Note Figure 20 includes the reference spectrum 

provided with the calibration standard. 

 

Figure 20 Spectra of the four probes in addition to the calibration standard. 

 

Figure 21 is the spectral data from the calibration standard after using the standard normal 

variate pre-processing method.  The MultiEye
TM

 prototype produces approximately the same 

spectrum as the reference spectrum under these experimental conditions.  All major peaks are 

correctly identified. 
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Figure 21 Spectra of the four probes and the calibration standard after SNV pre-processing. 

 

4.1.2 NIR spectrum of cellulose and sugar spheres in static conditions 

 

The spectra of three samples containing pure cellulose particles of nominal size 500 µm, 

sugar spheres particles of nominal size 500 µm, and mixtures of equal weight Cellets
®
 and 

sugar spheres were measured using the four probes of the MultiEye
TM

.  The mixture sample 

was prepared by weighting approximately 15g of Cellets
®
 and 15g of sugar spheres before 

mixing them.  The mixing was performed until a uniform mixture was obtained.  The four 

probes of the MultiEye
TM

 were fixed at a vertical position 0.5~1mm away from the samples’ 

surface.  Table 3 presents the settings of the MuliEye
TM 

in this experiment.  Note the 
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wavelength range was from 1520 to 2290 nm with a measurement taken every 10 nm thus a 

total of 79 measurements were recorded.  The spectrum generated for each probe is an 

average of five complete wavelength scans.  In each scan the absorbance measurement was 

performed sequentially by averaging 1000 measurements.  Hence the total number of 

measurements was 5000. 

 

Figure 22 Experiment setup for the NIR. 

 

Table 3 Setting of the Cellets
®
, sugar spheres and mixtures for NIR experiments. 

Wavelength range 1520 nm-2290 nm 

Step size 10 nm 

Sampling per wavelengths 1000 

Number of scans 5 

 

Figure 23 (a) shows the resulting spectra of the Cellets
®
, sugar and mixture sample obtained 

by the four probes.  Figure 23 (b) shows the spectra after applying the standard normal 

variate pre-processing method.  SNV removed the baseline shifts.  The spectra obtained by 
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the probes were validated in the NIR literature [79].  The mixture spectra are between the 

spectra of the pure Cellets
®
 sample and the spectra of the pure sugar sample at wavelength 

1930.  It has also more variation than the pure samples.   

 

Figure 23 (a) Raw spectra of the four probes (b) Spectra data of the four probes after applying SNV pre-

processing methods. 

 

4.1.3 Content prediction models in static conditions  

 

Figure 24 (a) shows the percentage content of cellulose plotted against the pre-processed 

spectral data at wavelength 1930nm.  In the same figure, a linear relationship between the 

content and the pre-processed absorbance values at 1930 nm is established using a simple 

regression line.  PCA was applied on the spectra of the three samples.  Figure 24 (b) shows 

principal component one plotted against principal two, the figure shows that PCA was able to 

cluster the samples based on their spectra.  

 All the spectra data can be used to predict the cellulose content instead of using only spectral 

data at wavelength 1930 nm.  This is performed using partial least square on the pre-
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processed data of the three samples.  Figure 24 (c) and (d) show the results after applying 

PLS, validation was carried out using the leave-one-out option, these figures show the 

prediction of the cellulose content using two and five components.  Using two components 

PLS can predict the content with a root mean square error of prediction (RMSEP) of 14%.  

Using five components the error decreases to 10%. 

  

 

 

Figure 24 (a) Arbitrary values of the three samples at wavelength 1930 in static conditions; (b) Principal 

component analysis applied on the whole spectrum; (c) PLS using two components RMSEP=14%; and(d) PLS 

using five components RMSEP=10%. 
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4.1.4 NIR spectrum of cellulose and sugar spheres in dynamic conditions 

 

To evaluate the ability of the MultiEye
TM

 to measure accurately the spectrum during particle 

movement, the same samples were placed on a rotating device which rotated with a speed of 

80~90 rpm, as described in section 3.4.  The four probes of the MultiEye
TM 

were fixed above 

the rotating device at about 0.5~1 mm from the sample.  The raw spectra of Cellets
®
, sugar 

spheres and 50% (w/w) mixture obtained from the four probes are shown in Figure 25 (a).  

The spectra are noisy compared to the spectra under static conditions.  It should be noted that 

the raw spectra of the four probes is approximately equal to each other.  
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Figure 25 (a) The raw spectra of Cellets
® 

under
 
dynamic conditions obtained from MultiEye

TM 
four probes (b) 

Spectra data of the four probes after applying SNV pre-processing methods and (c) Spectra data of the four 

probes after applying Savitzky-Golay method. 

Figure 25 (b) shows the spectra of the four probes after applying the standard normal variate 

pre-processing method.  In the case of particle movement the baseline shifts is less apparent 

that the static case so applying SNV corrects slightly the spectra of the probes. 

The same figure shows the mixture spectra is between the spectra of the pure Cellets
®

 sample 

and the spectra of the pure sugar sample.  Standard normal variate removed the baseline shift 

but it did not smooth the spectra.  To smooth the spectra, Savitzky-Golay with window length 

equal to 13 is used, Figure 25 (c) shows the resulting smoothed spectra.  The same figure 

shows that all the samples spectra have a varying peak at wavelength 1930 nm.  
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4.1.5 Content prediction models in dynamic conditions  

 

The content of cellulose is plotted against the absorbance of the spectra at wavelength 1930 

nm obtained from the four probes as shown in Figure 26 (a).  Similar to the static condition, a 

linear relationship between the content and the pre-processed absorbance values at 1930 nm 

is established using a simple regression line.  

Partial least square was applied on the SNV and Savitzky-Golay smoothed data of the three 

samples.  Figure 26 (a) and (b) show the result after applying PLS and validation was carried 

out using leave one out option, these figures show the prediction of the cellulose content 

using two and five component models respectively.  In the two components model, PLS 

predict the content with a root mean square error of prediction equal to 6% while for five 

components the error is equal to 4.3%. 
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Figure 26 (a) Arbitrary values of the three samples at wavelength 1930 in static conditions; (b) Principal 

component analysis applied on the whole spectrum; (c) PLS using two components RMSEP=6%; and (d) PLS 

using five components RMSEP=4.3%. 

 

PCA was applied also on the spectra of the three samples.  Plotting principal component one 

against principal component two yields the plot in Figure 26 (b).  PCA was able to classify 

the samples based on their spectra which reflect the cellulose content. 

4.1.6 Real time measurement of blend homogeneity  

 

As explained in section 3.4.3 a calibration model is constructed from the measurement of 
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Figure 27 indicates that four components are sufficient to explain most of the variation in the 

data.  So for the in-line measurement four components were used to predict the proportion of 

Cellets
®
.  To test the calibration model 10g of sugar were placed initially in the vortex shaker 

device that vibrate with circular motion that has a speed of 500 rpm then 10 g of Cellets
®
 

were added after 1000 seconds to the vibrating unit to create 50% (w/w) mixture.     

 

Figure 27 (a) Calibration model resulted from PLS using ten components; (b) The number of component vs the 

RMSEP. 

 

Figure 28 shows the online interface that contains three plots, the first plot is a plot of the real 

time measurement of the four probes’ spectra and the second are the spectra after applying 

SNV with smoothing and the last plot shows the inferred content of Cellets
®
, based on the 

calibration model constructed earlier, over the whole experimental period.  The model 

performed well in this case as it indicates that there is no Cellets
®
 in the sample.  As the 10 g 

of Cellets
®
 is added, the model responded immediately and the measured Cellets

®
 predicted 

content by the four probes jumping to a level higher than 50% before it stabilise between 

30%-60%.   
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Figure 28 Proportion content tests for 50% (w/w) mixture of sugar spheres and Cellets
® 

of size 500 µm. 

 

The second experiment was performed by placing 15g of sugar in the stainless steel container 

shaking with circular motion of 500 rpm with the previous PLS model used to predict the 

content of Cellets®.  Figure 29 shows the evolution of the estimated content of Cellets® 
in the 

sample over 2000 seconds.  The first plot in Figure 29 represents the real time measurement of 

the four probes’ spectra so in this case it represents the measurement at 3000 seconds.  The 

spectra are noisy due to the movement of particles, SNV was used to remove the baseline 

shift and then the noise was reduced using the Savitzky-Golay method and the resulting 

spectra are displayed in the second plot.  The smoothed spectrum was used to predict the 

content of Cellets® 
in the sample for each probe before updating the predictions in the last four 

probes.  The predictions are displayed in the last four plots.  Initially, between time 0 and time 

700 seconds, all the probes indicate a level of content between 15-20%.  At time 700 seconds 

5g of Cellets
®

 is introduced to the container to make a 75% sugar and 25% Cellets
®
 mixture.  

Addition of 10g of Cellets 
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This change in the sample chemical composition is sensed by the probes after 50 seconds and 

the prediction of Cellets®
 content in each probe oscillates between 20%-30%.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third experiment was performed by placing 15g of Cellets
®
 in the stainless steel 

container shaking with circular motion of 500 rpm then the PLS model is used to predict the 

content of Cellets®.  Here also, SNV was used to remove the baseline shift and then the noise 

was removed using the Savitzky-Golay method before estimating the levels of Cellets
®

 

content at each time step.  The predictions of Cellets
®
 content of the four probes over 3000 

seconds are shown in Figure 30, initially all the probes indicates a level of content between 

15-20%.  At time 700 second 5g of sugar spheres is introduced to the container to make 75% 

Addition of 5g Cellets Addition of 5g Cellets 

Addition of 5g Cellets Addition of 5g Cellets 

Figure 29 Proportion content tests for 25% Cellets
®
 and 75% sugar spheres, the left plots are the instantaneous 

measured spectra the top is raw spectra and bottom plot is the spectra after pre-processing the other four plots show the 

evolution of inferred Cellets
®
 percentage content from the four probes during the entire experiment 
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Cellets
® 

and 25% sugar.  This change in the sample’s chemical composition is sensed by the 

probes immediately.  In this case there was a difference between the probes predictions 

resulted from the PLS model.  Probes have similar prediction oscillating between 75%-80% 

while the other two probes oscillate between 70%-90%.  

 

 

Figure 30 Proportion content tests for 75% Cellets
®
 and 25% sugar spheres.  , The left plots are the 

instantaneous measured spectra the top is raw spectra and bottom plot is the spectra after pre-processing the 

other four plots show the evolution of inferred Cellets
®
 percentage content from the four probes during the 

entire experiment 

 

4.1.7 Effect of particle size on the blending process 

The in-line measurement of Cellets
®
 content during the mixing process with sugar spheres is 

repeated for 50% (w/w) proportion for different particle size ranging from 100 µm to 1000 

µm.  As described previously, the first step is to construct a calibration model by taking 
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measurement of different spectra of the following proportion of Cellets
®

 content 0%, 25%, 

50%, 75% and 100% (w/w) with a total weight of 20g.  The validation was performed using 

the leave-one-out method.  Figure 32 shows the different calibration models using four 

components for different size of particles.  

Prior to the in-line measurement of Cellets
®
 content, 10g of Cellets

®
 was placed in one end of 

a cylindrical container connected to a vortex mixer and 10g of sugar spheres were placed on 

the other end as shown in Figure 31. 

 

Figure 31 mixture of 50% (w/w) Cellets
®
 and sugar before the mixing. 

For the in-line measurement of 100 µm the probes were placed above the middle of the 

cylindrical container about 1-3mm far from the particle samples.  The speed of the vortex 

shaker was limited to 500 rpm.  Initially, the predicted Cellets
®
 content was noisy and 

fluctuated between 0% and 100%, but after 500s the inferred content of Cellets
®
 fluctuation 

interval was between 55% to 75%, 62% to 78%, 40% to 65%, and 50% to 70% for probe 
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1,probe 2, probe3, and probe 4 respectively (Figure 33).

 

Figure 32 Calibration models for (a) Cellets
®
 1000 µm (b) Cellets

®
 700 µm (c) Cellets

®
 500 µm (d) Cellets

®
 

200 µm and (e) Cellets
® 
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Figure 33 Summary of in-line experiment of 100 µm particle size with content proportions 50% (w/w). 

 

For the second experiment 10 g of Cellets
®
 and 10 g of sugar spheres having nominal particle 

size of 200 µm were placed in the cylindrical container connected to the vortex shaker at the 

same manner as the previous size.  This time the probes initially where above sugar sample 

near edge of the cylindrical container while the vortex shaker is turning at speed of 100 rpm.  

At this speed the sugar and Cellets
®
 did not blend, so all the probes initially indicate a low 

level of Cellets
®
, after 100 second the probes where moved to above the centre of the 

container and the speed of the vortex is increased to 500 rpm, the Cellets
®
 start to mix with 

the sugar spheres.  The model responded by indicating an increase in Cellets
®
 content.  The 
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fluctuations interval of the inferred Cellets
®
 content were 10% to 70%, 0% to 40%, 10% to 

55%, and 2% to 36% for probe 1, probe 2, probe 3 and probe 4 respectively.  After 500 

seconds the fluctuations interval width decreases to between 0% and 20% for all the probes 

except for the fourth probe that detect a maximum of 30% in Cellets
®
 content.    

 

Figure 34 Summary of in-line experiment of 200 µm particle size with content proportions 50% (w/w). 

 

An image of the mix after the blending process is shown in Figure 35, the sugar sphere colour 

is whiter than Cellets
®

 so the image shows a whiter circle in the centre of the container and 

darker colour on the edge of the container suggesting that sugar sphere segregated into the 

centre of the container while Cellets
®
 segregated on edge of the container.  This may be due 
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to slight particle size differences or other properties.  Normally Cellets
®
 200 µm have wider 

size interval ranging between 200 and 355 µm while for sugar spheres the range is between 

212 and 250 µm.  So even slight difference in particle size can affect the blending process. 

 

Figure 35 Mixture of 50% (w/w) sugar spheres and Cellets
®

 of nominal size 200 µm at the end the of the 

blending. 

The next mixture to blend was Cellets
®
 and sugar sphere with nominal size 500 µm, it was 

mixed in the same way as the previous particles by placing 10g of sugar spheres side by side 

with 10g of Cellets
®
.  The probes were initially placed at the same side as the sugar sphere. 
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Figure 36 Summary of in-line experiment of 500 µm particle size with content proportions 50% (w/w). 

 

In the case of mixing the blend of particle nominal size 500 µm, the predicted content of 

Cellets
®
 stabilised quickly compared to the previous particle size.  The predicted content of 

Cellets
®
 stabilises in about 100 seconds at a concentration of around 50%-70% depending on 

the probe, as shown in Figure 36. 
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Figure 37 Summary of in-line experiment of 700 µm particle size with content proportions 50% (w/w). 

 

The experiment was repeated for the particle nominal size 700 µm, the summary of the 

experiment is presented in Figure 37.  As the probes moved to the centre of the container and 

the speed of the vortex shaker was increased to 500 rpm to start the blending process, the 

predicted Cellets
®
 content increased immediately.  The interval of the fluctuations of the 

predicted Cellets
®
 content stabilise after a 100 seconds from the start of the blending process. 
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Figure 38 Summary of in-line experiment of 1000 µm particle size with content proportions 50% (w/w) 

 

Finally, the same experiment is performed for Cellets
®
1000 and the results are presented in 

Figure 38.  The figure shows that all the probes detected the change in the content; the 

predicted Cellets
®
 content fluctuate between 30% and 65% for all the probes which is larger 

when compared to the previous experiments.      
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4.2 Physical properties 

4.2.1  Particle size in static conditions  

4.2.1.1 One layer of particles 

 

Six samples of different size Cellets
®
 were prepared.  Each sample was placed in a sample 

holder as a monolayer of particles prior to the imaging step.  In total, six images were taken 

by the Eyecon
TM

 corresponding for each of the six size categories.  The size was estimated 

using the image segmentation analysis algorithm described in section 3.5.2.  Table 4 presents 

a summary of the estimated average per nominal size category. 

Table 4 Particle size categories versus average diameter estimates. 

Nominal size of particles 

(µm) 

Estimated average 

diameter(µm) 

1000 1022 

700 845 

500 541 

350 403 

200 316 

100 164 

 

A linear regression model was applied to the data in Table 4 and a R
2
 value of 0.98 was 

obtained.  Figure 39 shows a good linearity between the nominal size and the estimated 

average diameter. 
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Figure 39 Six particle size categories versus the average diameter established via image analysis of the 

Eyecon
TM

 images. 

 

4.2.1.2 Bulk powder particle size analysis 

 

To analyse the size of particles in a bulk powder bed, five samples were taken from five 

different nominal size categories of Cellets
®
.  The samples were placed in a tray in such a 

way as to have images of the bulk powder.  Figure 40 shows the bulk particle images taken 

by the Eyecon
TM

.  The size analysis of bulk powder using image segmentation algorithm is 

time consuming due to the overlapping particles and also due to the high number of particles 

in each image.  
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Figure 40 Eyecon
TM

 images of bulk powder particles of nominal size: (a) 200μm and 

(b) 700μm. 

(a) 

 

(b) 
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Since there is no background in this case, particles with low light intensities, usually particle 

at the bottom of the container, are considered as background by the algorithm so this will 

increase the value of the threshold.  A high threshold means that the algorithm will 

underestimate the size of particles because the extremities of a particle have relatively lower 

light intensity than its centre, so the algorithm will erode particles at their extremities leading 

to under estimation of particle size.  This can be noticed in Figure 41, even though several 

particles that are located at the top of the bulk powder had high intensity pixels, the algorithm 

removed several pixels from those particles to include them in the background at the 

extremities and thus reducing the particle size.  So, instead of measuring the particle size 

directly from image segmentation, texture analysis of bulk powder can be studied to infer the 

texture of a bulk particle surface to a specific size. 

 

 

 

 

 

 

 

Texture analysis using the variogram function was obtained from each image and was 

analysed to establish a relationship between texture of the image and size of the particle.  

Unfortunately due to limitation on the memory size of the R package, it is not possible to use 

the built in variogram function for calculating the variogram on the image directly.  So a pre-

processing technique is used in order to reduce the size of the image from 1037x1387 to 

129x174 pixels before the texture analysis step. 

Figure 41 The resulting image after applying the image segmentation 

algorithm. 
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Figure 42 shows the variogram functions of the five nominal size categories Cellets
®
.  The 

variogram functions of 700 and 1000 μm have higher values than the variogram functions of 

the other nominal size of Cellets
®
.  The experiment was repeated for ten images for each 

nominal size.  It can be observed that the values of the variogram function after lag four are 

ranked in accordance to the size of the particles.  To establish a relation between the size of 

the Cellets
®
 categories and the variogram function, theoretical exponential variogram 

parameters were estimated from each variogram function using the built in function in the 

GeoR package in R [78].  Figure 43 shows that the average of ten images sills for the five 

nominal sizes plotted against the corresponding nominal size.  Applying least square 

regression to find a linear relationship between the sill of the theoretical variogram and the 

nominal size of the Cellets
®
 and a value of R

2
=0.95

 
suggest a positive linear correlation 

between the theoretical sill of the variogram and the nominal size of the Cellets
®
.   
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Figure 42 Variogram functions of bulk particle images corresponding to five different nominal Cellets
®
 sizes. 
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Figure 43 Linear relation between Nominal size of Cellets
®

 and variogram sill 

 

4.2.2 Particle size estimation in dynamic conditions 

4.2.2.1 Conveyor belt 

 

This experiment examined the Eyecon
TM

 in conjunction with the image analysis methods 

presented in section 3.3 for determining the size of particles under motion.  Three different 

size particles of nominal values 500, 700 and 1000 µm were used in this experiment.  Ten 

samples each of the three nominal size categories were prepared hence a total of thirty images 

were acquired by the Eyecon
TM

.  This experiment was repeated under static, slow and fast 

speeds see Table .  
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Table 7 Summary of experiments for particle size estimation under different conditions. 

 Static Slow (3 cm/s) Fast (23 cm/s) 

Cellets
®
 500 µm 10 samples 10 samples 10 samples 

Cellets
®
 700 µm 10 samples 10 samples 10 samples 

Cellets
®
 1000 µm 10 samples 10 samples 10 samples 

 

Figure 44 shows the results of calculating the mean particle diameters for the experiemental 

design in Table .  It shows that the estimated mean diameter for each of the three nominal 

size Cellets
®
 is approximately the same regardless of the state of the Cellets

®
.  A one-way 

ANOVA was performed for each of the three nominal sizes to compare the estimated mean 

size showing no significant difference (p<0.05) between static, slow and fast conditions. 

 

Figure 44 Estimated mean diameter for Cellets
®
 of nominal size 500, 700 and 1000 µm in static and dynamic 

conditions. 
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Table 8 Estimated means of Cellets
®
 in static and dynamic conditions, and the one-way ANOVA results 

between the means in static and dynamic condition for different size particles. 

Cellets
®
  

Nominal 

Size μm  

Estimated 

Mean 

diameter at 

0 cm/s  

Estimated 

Mean 

diameter 

 3 cm/ s 

Estimated 

Mean diameter 

23 cm/s  

one-way 

ANOVA (0 

and 3cm/s) 

one-way 

ANOVA (0 

and 23 cm/s) 

500   µm 494.1 503.0 496.2 P>0.05 P>0.05 

700  µm 731.2 731.4 727.4 P>0.05 P>0.05 

1000 µm  1035.5 991.8 996.8 P>0.05 P>0.05 

 

 

 

4.2.2.2 Free Fall 

 

Using the experimental setup described in section 3.4, different size particles were fed 

between two glass windows and subsequently images were captured using the Eyecon
TM

.  

Only one image per nominal size particle is considered.  The challenging part in the free fall 

is that not all the particles were in the camera’s focal plane, here the size of particles not in 

the focal plan might be either overestimated or underestimated depending on the position of 

particles with respect to the focal plan of the camera (Figure 45).  Also particles can be 

partially hiding each other if they are in the same horizontal line as the camera which can 

mislead the image analysis algorithm that might consider the two particles as one and thus 

overestimate the average size of particles (Figure 45).    
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The intensity of particles in focus and out of focus was compared to each other as shown by 

plotting the intensity level of the red line in Figure 46.  The resulting plot shows that the 

maximum intensity of the particle in focus is higher than the particle out of focus.  In 

addition, the intensity of the in focus particle has a spiky peak while the intensity of the 

blurry particle changes at a slower rate around the maximum intensity.    

 

 

 

 

 

 

Size analysis was performed in similar manner as in the previous section.  A linear regression 

model was applied and a R
2
 value of 0.99 was obtained (Figure 47).  The result shows a 

similar trend to the static case, although in the free fall state the estimated size is slightly 

smaller than the nominal size which may be due to the out of focus particles.    

 
 

 

 

 

 

 

 

 

Focus region 
Figure 45 Challenges associated with free fall imaging. 

Figure 46 Plot of pixels’ intensity of a vertical line in free fall greyscale image. 
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Figure 47 The average diameter of particles in free fall state established via image analysis by the Eyecon
TM 

images. The slope of the correlation plot is not significantly different (p<0.05) from 1. 

4.2.3 Surface texture 

 

Prior to texture analysis, image segmentation algorithms described in the previous section 

were applied.  At the end of the image segmentation step, surface areas around the particles’ 

centres were selected.  The Haralick correlation property and variogram function were 

calculated for all particles in one image before obtaining an image average for both the 

Haralick correlation property and the variogram function between distances of lag 1 and 20.   

4.2.3.1 Static conditions 

 

The following experiment examined the Eyecon
TM

, in conjunction with surface texture 

analysis techniques presented in section 3.6, at classifying particles based on their surface 

morphologies under static conditions.  Three different samples were used containing 700 µm 

category smooth Cellets
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, treated Cellets
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Cellets
®
.  Ten samples were obtained from each of the three categories so a total of thirty 

images were captured before applying the surface texture analysis.  

Table 9 Summary of experiment related to static surface texture estimation. 

 Static 

Untreated 700 µm Cellets
®
 sample 10 samples 

Mixture sample 10 samples 

Treated Cellets
®
 sample 10 samples 

 

Figure 48 shows the resulting means of the variogram and Haralick correlation property of 

pixel intensity scores of neighbouring pixels at distances (arbitrary unit for distance between 

pixels) of between 1 and 20.  The smooth particles’ mean variogram function has a smaller 

slope than the blended sample and the treated particles.  For the treated particles, the 

variogram means also show higher variability than the other samples.  The means of the 

Haralick correlation function of the smooth particles have smaller slopes compared to the 

Haralick correlation means of the other samples.  The behaviour of the Haralick mean 

correlation property and variogram mean can be explained by the greater correlation of pixels 

separated by a distance 𝑘 for the smooth particles.  It would be expected that pixels in treated 

particles would be less correlated due to sudden spatial changes in pixel intensities due to its 

different morphological properties.  There is also a slightly higher variability in the treated 

particle samples suggesting the spatial variability between particles within the treated group 

is larger than the smoother particles.   

In the same figure, applying PCA on the mean variogram and Haralick correlation feature 

showed two distinguishable groups.  The first cluster contains smooth Cellets
®
 and mixed 

particles while the second group contains treated Cellets
®
.  
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Figure 48 Texture analysis for the first sets of particles under static conditions: (a) Mean of variogram function; 

(b) Mean of Haralick function; (c) PCA classification based on the mean variogram function; (d) PCA 

classification based on the mean of Haralick function. 

 

4.2.3.2 Dynamic conditions 

 

The following experiment examined the Eyecon
TM

, in conjunction with surface texture 

analysis techniques presented in section 3.6, at classifying particles based on their surface 

morphologies under dynamic conditions.  Particles were adhered to a conveyor belt as 

described in section 3.4.  The conveyor belt was operated at two speeds: slow (3cm/s) and 

fast (23 cm/s).  For each speed the experimental design consisted of three different samples 

containing smooth Cellets
®
, treated Cellets

® 
and a mixture of 50% (w/w) treated and 
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untreated Cellets
®
.  Ten samples were obtained for each of the three categories so a total of 

thirty images were captured before applying the surface texture analysis at each speed Table .  

Table 10 Summary of experiment related to dynamic surface texture estimation 

 Slow (3 cm/s) Fast (23 cm/s) 

Untreated Cellets
®
 sample 10 samples 10 samples 

Mixture sample 10 samples 10 samples 

Treated Cellets
®

 sample 10 samples 10 samples 

 

The results for the dynamic conditions show a relatively similar behaviour as for the static 

conditions. Figure 49 shows the mean of the variogram and the Haralick correlation property 

respectively for particle surfaces under slow speed.  Under slow speed conditions the 

Haralick correlation property and the variogram function of the smooth particles had smaller 

slopes than both the blended and treated samples.  There is less variability among surface 

texture functions for the three sample types.  Although the variance at distance one is very 

small, it increases gradually with distance.  It is suggested that the movement of the particle 

might affect the resolution of the captured image with the details of the surface becoming less 

clear.  Applying PCA on the Haralick correlation property gave two distinct clusters, one is 

the smooth particles while the second is the treated samples and the blended particles 

overlapping. 
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Figure 49 Results for the first set of particles at slow speed: (a) Mean of variogram function; (b) Mean of 

Haralick function; (c) PCA classification based on the mean variogram function and (d) PCA classification 

based on the mean of Haralick correlation feature. 

  

As the speed of the conveyor belt increased to 23 cm/s, the mean of the variogram and the 

mean of the Haralick correlation property function of the three sample types become closer to 

each other as showed Figure 50.  The variogram function showed more variability than the 

Haralick correlation property under this dynamic condition.  Applying PCA using either the 

variogram or Haralick correlation function can identify two groups: one is the treated 

particles while the other one is a smooth particle group and the blended group which are 

overlapping.   
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Figure 50 Texture analysis for the first set of particles at faster speed 23cm/s: (a) Mean of variogram function; 

(b) Mean of Haralick correlation feature; (c) PCA classification based on the mean variogram function; and (d) 

PCA classification based on the mean of Haralick correlation feature. 

 

4.2.4 Texture analysis on the API sample 
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described in section 3.6 on three different particle samples containing smooth Cellets
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®
.  Ten samples were obtained from each of the three categories so a total of thirty 

images were captured before applying the surface texture analysis under static conditions.  
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Figure 51 Results for the second set of particles under static conditions; (a) Mean of variogram function (b) 

Mean of Haralick function; (c) PCA classification based on the mean variogram function and (d) PCA 

classification based on the mean of Haralick function. 

Figure 51 shows the mean variogram and Haralick correlation functions for the three 

categories of particles in the static state.  Although all the plots started at the same point at 

distance one, the rate of change in the variogram and Haralick correlation functions was 

slower in the case of Cellets® and faster in case of the API.  In the case of the mean variogram 

the variance at each distance step of the blended sample is the highest, this is due to the fact 

that images of the blended sample may contain different ratio of Cellets
®
 and API particles.  

Again, the behaviour of the Haralick mean correlation property and variogram mean can be 
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explained by the greater correlation of pixels separated by a distance 𝑘 for the smooth 

particles.  And the pixels in the API would be less correlated.  In this case the mean 

variogram and Haralick correlation were successful in reflecting the morphology of the 

particles as three clusters of points were obtained after applying PCA. 

4.2.4.1 Dynamic conditions 

 

This is similar to the previous experiment but with different samples namely smooth Cellets
®

 

with nominal size 1000 µm, API with nominal size 1000 µm and a blend of 50% (w/w) API.  

Ten samples were obtained for each of the three categories so a total of thirty images were 

captured before applying the surface texture analysis at each speed.  At 3cm/s the mean 

variogram and Haralick correlation property function have similar behaviour as for the static 

case as illustrated in Figure 52; the rate of change in both mean functions is slower in case of 

Cellets
®
 and higher in case of API.  The difference from the static state is noticed in the 

higher variance in the variogram mean of the blended particles and also this time the API and 

the blend mean variogram and Haralick correlation property are close to each other at each 

distance step.  Consequently, applying PCA on both the variogram and the Haralick 

correlation property gave two clusters of points in each case, one corresponding to smooth 

particles while the other correspond to both the blend and API.   

Increasing the speed of the conveyor belt to 23 cm/s, the mean variogram and Haralick 

correlation property showed a similar result to the texture analysis at 3cm/s, the only 

difference was that the variance of the mean variogram and Haralick correlation function of 

the API particles are higher than for the previous particle speed (Figure 53).   
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Figure 52 Texture analysis for the second set of particles at slower speed (3cm/s): (a) Mean of variogram 

function; (b) Mean of Haralick function; (c) PCA classification based on the mean variogram function; and (d) 

PCA classification based on the mean of Haralick correlation property. 
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Figure 53 Texture analysis for the second set of particles at faster speed (23cm/s): (a) Mean of variogram 

function; (b) Mean of Haralick correlation feature; (c) PCA classification based on the mean variogram 

function; and (d) PCA classification based on the mean of Haralick correlation feature. 

 

4.2.5 Texture analysis using Auto-correlation function 

 

The auto-correlation function is computationally cheap compared to the previous surface 

texture analysis methods.  In this work, it is computed in the horizontal and the vertical 

directions and then an average between the two directions is calculated.  Similarly, to the 

previous texture analysis functions the texture analysis is performed on pixels that are apart 

between 1 and 20 pixels (distance lags).   
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Figure 54 Autocorrelation function for the three particle state: (a)static; (b)slow and (c)fast. 
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An average of the auto-correlation function corresponding to particles from ten images is 

determined for each particle state (static, slow and fast).  Figure 54 shows the resulting plots 

from the first set of particles, the autocorrelation function shows a similar behaviour as the 

Haralick correlation property function.  In all particle states the average autocorrelation 

function ranked the three speed categories of particles as Cellets
®
.  Autocorrelation mean of 

the ten images is bigger than both the mixed sample and treated Cellets
®
.  The figure also 

shows a low variation for the surface texture of Cellets
®
 in both static and slow motion states 

having a smaller standard deviation compared to both the mixed and treated particle samples.  

This is captured in the PCA plot of the first component against the second principal 

component where Cellets
®
 are more clustered than the other two particle sample categories.  

The source of variation of the mixed sample arises from the fact that it contains two types of 

surface texture while in the case of treated Cellets
® 

variation is coming from the resulted 

etched Cellets
®
 surface structure.  In static and slow motion states PCA classified particles 

into two clustered groups, the first group was composed of Cellets
®
 and the second group is 

composed of the mixed sample and treated Cellets
®

.    

For the second set of particles, Figure 55 shows the resulting plots from the autocorrelation 

function means of 10 images and the PCA plot from principal component analysis.  The 

autocorrelation function in this case does not indicate any change in the surface texture 

between distance 1 and 5, but after distance 5 the function average of Cellets
® 

is higher than 

the mix sample and the API particles for all particle states.  In the classification, the auto-

correlation function gave three groups corresponding to each particle category. 
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Figure 55 Autocorrelation function for the second set or particles three particle state: (a)static; (b)slow and and 

(c)fast. 
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4.2.6 Texture analysis on Edge based image 

 

The images from the previous section of the API, Cellets
®
 and their 50% (w/w) mixture were 

used to test the edge based texture analysis approach.  The Sobel operator was applied on the 

surface of the greyscale surface of each particle before performing the texture analysis using 

the variogram function.   

The texture analysis results are shown in Figure 56, for all states the variograms were able to 

rank the particles in accordance with their surface morphology.  The mixture contains two 

types of surface morphology, explaining the higher variations observed in the figure for all 

particles and also the higher spread of mixture points in the principal components graph for 

the three states.  The variograms of all the particles have the same range but they have 

different sills so in PCA all the points were approximately in one line which means that only 

one component is needed to explain most of the variation of the data, thus the sill is the only 

measure that can differentiate between the particle surface morphology in this case.  

However, compared to the variograms obtained in the previous section using the surface of 

the grayscale image, the variogram of the edges showed more difference between Cellets
®

 

and API. 

The state of the particles also affected the texture analysis for Cellets, as the particle speed 

increased the morphology of Cellets
®
 appeared to be smoother thus variation was detected in 

the fast speed case compared to the previous states.  For the other particles the variation was 

about the same. 
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5 Conclusions 

 

5.1 Chemical Properties and NIRS 

 

 The MultiEye
TM

 can, in conjunction with the multivariate techniques explored in this 

thesis, be used to correctly identify the chemical composition of pharmaceutical 

particles in both static and moving particle samples.  As the particles move it becomes 

more challenging to measure the spectrum of these particles because the MultiEye
TM

 

probes require some time to detect the reflectance of the samples.   

 The spectrum of moving particles is noisy, applying smoothing algorithm reduces the 

noise and produces a spectrum similar to the spectrum of the particles in static state. 

 The MultiEye
TM

 can, in conjunction with multivariate techniques be used as in-line 

tool of the pharmaceutical blending process to determine the homogeneity of the 

blend at a lab scale. 

5.2 Physical Properties and Image Analysis 

 

 During blending, particle size affected the time required for the blend to reach a stable 

mixture; this study showed that for small particles more time is required to reach 

blend stability.  It was shown in this thesis that a small difference of size among 

particles in the blend can lead to segregation of particles.  At the other end particles 

bigger than 500 µm required less time to reach a stable mixture but for 1000µm the 

blend appears to constantly mix and segregate, this might be due to the inaccurate 

measurement of the spectra of bigger particles. 

 Capturing images requires a fraction of a second, but the image analysis might be 

costly in terms of computation.  Image analysis using the thresholding and 
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segmentation techniques, described in this thesis, were able to estimate particle size in 

both static and dynamic conditions.  

 Particle size analysis on bulk powder using image segmentation is challenging since 

there is no background in the image thus the algorithm considers particles with low 

light intensity as a background therefore the particle size is underestimated.  In this 

case particle size can be estimated by inferring the obtained texture analysis property 

to size.  In this study the variogram sill is correlated to the nominal size of the 

particle. 

 The image texture analysis techniques explored in this thesis can classify particles 

based on their surface texture under static conditions.  However, in dynamic 

conditions the quality of the surface image of the particles becomes lower.  This is 

mainly due to the blurriness of pixels caused by particle movement.      
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6 Recommendation for further work 

 

 NIRS can be investigated more in depth for samples under dynamic conditions, for 

example in a free fall situation  The experiment performed in this work were at lab 

scale a further step is to apply this system on factory scale using a real pharmaceutical 

powder. 

 Several studies reported the use of NIRS to determine the surface texture of the 

material.  Future works can investigate the use of NIRS to classify particles based on 

their surface texture. 

 This study investigated the blending process of a binary mixture, in pharmaceutical 

blending process often has more than two components thus the model developed in 

this study can be further developed to take into account more components.  In 

addition, the method presented in this work can be extended to estimate limits of 

detection. 

 In this work spherical particles were used to perform the size analysis, analysis for 

non-spherical should be considered in future works.   

 The accuracy of the size analysis under free fall state can be improved by either 

removing the blurriness from the particles using de-blurring methods or simply 

removing the blurry particles from the image analysis.    

 Particles in a pharmaceutical process might be in a bulk form, the use of image 

segmentation is challenging and time consuming which will not permit the in-line 

calculation of the particle size.  In this work particle size analysis on bulk particles 

was performed indirectly by inferring the obtained texture analysis property to size.  

The texture analysis used in this thesis gives one overall average particle ignoring the 

variation within particle size.  The current method can be improved by dividing the 

image into regions and estimate the size in each region.  This might give an estimation 
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of different particle size in the sample.  In addition, edge based segmentation can be 

used to estimate the particle size in bulk powder.  The next step is to develop edge 

segmentation algorithms. 

 Particles can be classified by studying their microscopic surface texture so their 

proportion in pharmaceutical powder can be estimated.  An attempt to do that is 

shown in Figure 57, where the surface texture of an API and Cellets® is studied using 

the variogram function and then their mean is calculated.  This method can be 

improved by including other physical information such as the size and shape of 

particle or by using some statistical models.  Further work can be continued to 

implement the adoption of this technology by the food and pharmaceutical industry 

following the challenges described in Cullen, O’Donnell and Fagan [8080]. 

 

 

Figure 57 Identifying content percentages of different types of particles 
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