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ABSTRACT 

 

The major challenge in pharmaceutical research is the improvement of drug efficacy, 

including enhancement of solubility and permeability, leading to an improved oral 

bioavailability of drugs. Semi-Synthetic Biopolymer Complexes (SSBC) as drug nano-

enabled delivery systems have gained significant interest in recent years. Their significance 

originated from the fact that they show great potential as drug nano-carriers used for oral 

drug delivery. This resulted from their exceptional properties obtained by merging the 

properties of synthetic (e.g. good thermal and mechanical properties) with natural polymers 

(e.g. biocompatibility); thus forming a new class of biopolymeric materials combining the best 

of both aspects. 

 

This research employed a class of polymers called SSBC as oral drug nano-carriers. This 

investigation attempted to improve the permeability and solubility of acyclovir (ACV). It also 

sought to develop guiding principles in examining and solving key issues of ACV nano-

encapsulation as means to enhance its oral bioavailability. The use synthetic or natural 

polymers independently pose limitations in their properties as drug carriers. In this research, 

a delivery system was designed for ACV with desirable physicochemical and 

physicomechanical properties, engineered by modifying hyaluronic acid (HA) with poly 

(acrylic acid) (PAA), conjugated with (2-hydroxypropyl)-𝛽-cyclodextrin (HP-𝛽-CD), yielding an 

―intelligent‖ nano-enabled drug delivery system to regulate ACV permeability and solubility. 

The synthetic method employed was based on the covalent coupling of the polymeric chains 

at their respective reactive functional groups, followed by conjugation with the HP-𝛽-CD.  

 

A Face-Centred Central Composite Design (FCCCD) was utilized for the generation of an 

optimized formulation. The formulation was analysed using the following dependent 

parameters: the size, drug entrapment, solubility and permeation. The comparative In vitro 

studies for ACV-loaded polymeric nanoparticle compared with ACV from the comparator 

product revealed that both formulations had significant different profiles, since f1 (the 

difference factor 1) was calculated to be 104.02 and f2 (the similarity factor 2) was 31.83. The 

current investigation also provided evidence that the SSBC nano-system improved the 

solubility of ACV by 30%. Hence the ex vivo permeation studies was performed using pig 

intestinal mucosa. Therefore, ex vivo studies revealed that the prepared ACV-loaded 

polymeric nanoparticle (p < 0.05) significantly enhanced the cumulative value of ACV 

compared to the ACV from conventional formulation (comparator product). In vivo studies 

were performed using Large White Pig model to assess the pharmacokinetics of ACV from 

the SSBC nano-system, compared to the comparator product. The study revealed that the 

conventional dosage (comparator product) maximum drug release occurred at 3 hours after 

dosing (Tmax = 3 hours), with a peak plasma concentration of ~400ng/mL (Cmax= ~400ng/mL). 

Ultra-Performance Liquid Chromatography (UPLC) was employed for drug sample analysis. 

In relation to these results, the optimized synthesised ACV-loaded polymeric nanoparticles 

possessed a Tmax of 8 hours with peak concentration, Cmax of ~850ng/mL. The area under the 

plasma profile curve (AUC) for the optimized ACV-loaded polymeric nanoparticles was 

calculated to be ~10301ng.h/mL, while the comparator product displayed an AUC of 

~2468ng.h/mL. It can thus be concluded that relative bioavailability of the synthesised 

optimized ACV-loaded polymeric nanoparticles relative to the comparator product formulation 

was enhanced by a factor of ~4.17.  
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND 

 

1.1. BACKGROUND OF THIS STUDY 

Oral administration of therapeutic agents is the most favoured and convenient route due to 

patient compliance. Currently, the major focus in drug delivery is the design of non-

conventional oral drug delivery systems, with improved pharmacokinetic profiles (Vashista et 

al., 2012). Conventional capsules or tablets move through the gastrointestinal tract (GIT) and 

release drugs in non-specific regions within the GIT (Park, 1990). Therefore, the design of 

site-targeted drug release systems is an essential factor for improved oral bioavailability of 

various drug molecules.  

 

There are various drug molecules with poor aqueous solubility, resulting in low bioavailability 

when administered orally, due to the limitations of their carrier system (Lipinski et al., 2000). 

It has been reported that approximately 70% of new drug candidates have a problem of low 

water solubility (Kakran et al., 2012). There are a number of negative clinical effects shown 

by poorly soluble drugs such as inefficient treatment, increase risk of toxicity or even death. 

Hence, poor solubility of drugs is amongst one of the major obstacles in the development of 

high efficacy pharmaceuticals (Kakran et al., 2012), for example, anti-viral drugs (e.g. 

acyclovir) are mostly regarded as poorly permeable across the GIT membrane and have low 

solubility mainly in the small intestinal region (Tomar et al., 2010). Additional groups of drugs 

such as anti-fungal, hormonal agents, chemotherapeutic and anti-parasitic are also regarded 

as poorly water soluble. This brings about limitations in their use. Hence the implementation 

of specially designed carriers/nanostructures for the improvement of their delivery is required 

(Yuri et al., 2002). Researching alternative drug delivery systems during the early stages of 

drug development is therefore significant to avoid pitfalls in drug delivery to the body. 

 

Manipulation of polymer features through nanotechnology provides advanced drug carriers 

for enhanced disease management and treatment. The polymers used during synthesis as a 

carrier system, determines the type of nanostructure and the kind of drug that can be 

incorporated as well as the release characteristics of the system (Husseini and Pitt, 2008). 

Polymeric nanoparticles are colloidal solid particles (Yih and Al-Fandi, 2006) that exist as 

shells or spherical structures (Kingsley et al., 2006). Drugs can be integrated into polymeric 

nanoparticles by one of the following methods: encapsulation, attachment, dissolution, 

entrapment, or by adsorption (Arnal et al., 2008). Nanoparticles also have the capability to 

penetrate the body tissues due to their small size. However, adequate knowledge on how 
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these nanoparticles interact with organisms and living cells is essential for effective treatment 

(Wang et al., 2012).  

 

This research focuses on improving the permeation and solubility of oral drugs, 

consequentially enhancing their oral bioavailability, as well as seeking to develop guiding 

principles to examine and solve key issues of their nano-encapsulation as a means to 

enhance their oral bioavailability. The physicochemical and physicomechanical properties of 

the drug delivery system was engineered by modifying specialised biopolymers to specifically 

regulate the solubility, permeability and bioavailability of the drug molecules and to produce 

an ―intelligent‖ polymeric nano-enabled drug delivery system. Therefore, this study proposed 

a new integration of natural with synthetic polymers to develop a novel Semi-Synthetic 

Biopolymer Complex (SSBC) as a polymeric nanoparticle drug delivery system. This 

polymeric nanoparticle drug delivery system is anticipated to enhance the permeation and 

solubility of poorly permeable and soluble oral drugs, while ensuring low toxicity after oral 

administration. 

 

1.2. RATIONALE AND MOTIVATION FOR THIS STUDY 

This research study proposed to develop a novel Semi-Synthetic Biopolymer Complex 

(SSBC) loaded with acyclovir (ACV) as an orally administered enteric coated capsule. 

Acyclovir was selected as the drug of choice in this investigation in order to examine the 

functionality of the synthesized drug carrier (SSBC). Acyclovir was reported to be slightly 

soluble in water (pH 7.4) (2.558µg/mL) at room temperature (22─25oC), possessing pH-

dependent solubility (Susantakumar et al., 2011). A study conducted on the pH dependence 

of ACV found that it had higher solubility in pH 9.8 (61.842µg/mL) in comparison to pH 6.8 

(2.250µg/mL). Table 1.1 shows the solubility profiles of ACV at different pH conditions 

(Chaudhary and Verma, 2014). 

 

Table 1.1: The solubility profiles of acyclovir tested in different pH buffer solutions. 
(Chaudhary and Verma, 2014)  

Sample number Buffer solution Solubility (µg/mL) 

1 HCI buffer of pH1.2 18.315 
2 Acetate buffer of pH4.5 10.064 
3 Phosphate buffer of pH5.5 2.515 
4 Phosphate buffer of pH6.8 2.250 
5 Phosphate buffer of pH7.4 2.558 
6 Borate buffer of pH9.8 61.842 

 
 The SSBC was developed to enhance the oral solubility and permeation of low permeable 

and soluble drugs such as ACV. As indicated, ACV is mostly poorly soluble in the small 

intestine (pH 5.5-6.8) compared to the stomach (pH 1.2) as observed in Table 1.1. Hence, 
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the final formulation was enteric coated to avoid degradation of ACV in the acidic conditions 

of the stomach (Khokale and Patil, 2004; Sinha et al., 2007) and only release the nano-

formulation in the small intestine. Therefore, the solubility and permeability of ACV is 

believed to be enhanced by the SSBC so as to achieve the maximum absorption through the 

small intestinal duodenal epithelium. Novel synthetic methods employing natural and 

synthetic polymers were used to fabricate the ACV-loaded SSBC and to additionally modify 

the physicomechanical and physicochemical properties of the polymer nano-structure in 

order to achieve a superior solubility and permeation of ACV. 

 

Following preliminary investigations for identification of the appropriate polymers that could 

be integrated into the SSBC, it was found that the complex would comprise of a natural 

polysaccharide (e.g. hyaluronic acid) (HA) and a synthetic polymer (e.g. poly (acrylic acid)) 

(PAA) with an addition of a synthetic permeation enhancer (e.g. (2-hydroxypropyl)-𝛽-

cyclodextrin (HP-𝛽-CD)). This newly developed SSBC would not just enhance intestinal oral 

drug permeation and solubility, but would also protect the encapsulated drug against harsh 

GIT conditions, allowing more ACV to be available at the membrane barrier for entry into the 

blood.  

 

The SSBC comprised of three components as described above. The nano-size and spherical 

shape of the final formulation would be facilitated by emulsion techniques and the solution 

subsequently subjected to spray-drying (Nano Spray Dryer B-90, Buchi, Switzerland) in order 

to obtain a free-flowing powder of spherical nanoparticles. This formulation of ACV-loaded 

SSBC may be an alternative formulation for the already existing ACV formulation on the 

market. The selected polymers and the chosen size were proposed so as to enhance the 

dissolution of low soluble oral drug in aqueous medium by enhancing the surface area for 

hydration. The SSBC formulation was proposed to give an enhanced bioavailability 

compared to the existing formulation in the market, due to the improved solubility and 

reduced size as mentioned. The targeted area for the drug absorption is the small intestinal 

region as shown in Figure 1.1. For the protection of the capsule against ACV degradation in 

the acidic gastric conditions (Khokale and Patil, 2004; Sinha et al., 2007), the capsule was 

enteric-coated as highlighted, thus targeting release of the ACV-loaded SSBC in the small 

intestine.  
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Figure 1.1: Representation of the site of permeation\absorption of the drug loaded 
nanoparticles and free-drug. 
 

Many strategies have being developed to overcome the challenge of low permeation and 

solubility of drugs using polymeric and lipid systems. Even so, many of these drugs still 

present multiple side-effects and high toxicity not only associated with their low solubility, but 

also with the method of drug delivery. Designing SSBC polymeric system will be beneficial 

because the drug can be entrapped in the core of the system (as shown Figure 1.2) and this 

nano-structure has the potential to enhance the solubility and permeation of the 

encapsulated drug. Figure 1.2 highlights the general process of drug encapsulation within 

the polymeric complex matrix. 

 

 

Figure 1.2: Schematic representation of the encapsulation of drug, where (a) natural 
polymer, (b) synthetic polymer, (c) additional synthetic chemical and (d) encapsulated drug. 
 

Natural polymer              Synthetic polymer       Semi-Synthetic Biopolymer Complex             Synthetic permeation enhancer       Modified Semi-Synthetic Biopolymer Complex 

Drug (e.g. ACV) 

Drug encapsulation 

(a) 

(b) 

(c) 

(d) 

Reaction 

Coupling 
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1.3. AIM AND OBJECTIVES OF THIS STUDY 

The aim of this study was to synthesize a novel Semi-Synthetic Biopolymer Complex (SSBC) 

oral drug delivery system, which led to the enhancement of oral bioavailability of low 

permeable and soluble drugs. This aim was achieved with the following objectives: 

 

1. Selection and modification of suitable polymers (natural and synthetic polymers) that 

may be employed for the development of the Semi-Synthetic Biopolymer Complex 

(SSBC).  

2. Critical literature evaluation in the field of SSBC as oral nano-enable drug delivery 

systems, in order to acquire knowledge on the research accomplished in this field of 

study. 

3. Development of novel SSBC loaded with an appropriate prototype drug molecule and 

characterized to obtain fundamental physicochemical and physicomechanical 

properties. 

4. To optimize the developed nanopolymeric formulation using a face-centred central 

composite design.  

5. To perform in vitro drug release analysis for determination of drug release 

characteristics of the SSBC system. 

6. To perform ex vivo tissue permeation studies of the nanostructure, using pig intestinal 

tissue, as well as undertaking cytocompatibility analysis using caco-2 cells. 

7. To conduct In vivo drug release evaluation to assess the nano-delivery system in a 

suitable animal model. 

 

1.4. NOVELTY OF THIS STUDY 

1. An integrated novel system known as SSBC has been synthesised in the effort to 

overcome the limitations associated with previous polymeric drug delivery systems. 

The SSBC will comprise of at least two new chemical integrated components: i.e. 

natural and synthetic polymers. The drug delivery system/complex is completely novel, 

and has not been formulated in previous studies published. 

2. The novel drug-loaded polymeric nano-system powder was prepared by an innovative 

combination of two processes: The first being the emulsification process, followed by 

the unique nano-spray drying technique. 

3. Different bioactive molecules such as drugs, genes and proteins can be entrapped, 

adsorbed, or covalently attached in the hybrid system of the SSBC. The polysaccharide 

(natural polymer) component of the system core is biocompatible and the composite 

structure of the SSBC exhibits similar attributes to that of the cell membrane. 
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4. The selection of polymers was directed toward enhancement of permeation and 

solubility of oral drugs and the potential to be reduced to nanoparticles. 

 

1.5. OVERVIEW OF DISSERTATION 

CHAPTER 1: This chapter provides a background of current research in the field, providing 

challenges faced with oral drug delivery systems, particularly for drugs with low permeation 

and solubility in the GIT. The rationale for this research is stressed, with the aims and 

objectives of undertaking this research outlined in detail. 

 

CHAPTER 2: A literature review, substantiating the science behind the formulation of Semi-

Synthetic Biopolymer Complex (SSBC) systems, as drug delivery carriers. This chapter 

focuses on various ways of fabricating SSBC systems and the critical factors to be 

considered when synthesising these complexes. The limitations of using natural or synthetic 

polymers alone and the benefits of using a hybrid of natural and synthetic polymers as drug 

delivery systems are also discussed in detail. 

 

CHAPTER 3: This chapter provides the preliminary experimental laboratory formulation 

synthesis, as well as physicochemical and physicomechanical characterization, in 

conjunction with in vitro release analysis and permeation studies. The preformulation 

parameters of this complex are also discussed, with various techniques used to characterize 

the interaction of the precursors and the newly-formed complex. Some of the studies 

undertaken include attenuated total reflection transform infrared spectroscopy (ATR-FTIR), 

Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and proton 

nuclear magnetic resonance imaging (1H NMR). 

CHAPTER 4: This chapter describes in detail the analysis and optimization of the drug-

loaded SSBC, prepared according to variables using a face-centred central composite 

design program. The formulation was analysed using four main parameters, namely: particle 

size, drug entrapment, solubility, permeation efficiency. Following responses from the central 

composite design, an optimised formulation was determined.  

CHAPTER 5: In vivo studies are the main focus in this chapter, employing a Large White Pig 

model for clinical pharmacokinetic observation. At predetermined time intervals, blood 

samples were collected and analysed, after dosing the synthesised SSBC ACV-loaded 

nanoparticles and comparative formulations. The amount of the drug present in blood plasma 

was quantified and detected using Ultra Performance Liquid Chromatography (UPLC), 

thereby determining the percentage bioavailability of drug. 
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CHAPTER 6: This chapter completes the dissertation, providing a conclusion and a 

perspective recommendation in the field of SSBC technologies for drug delivery. 
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CHAPTER TWO  

SEMI-SYNTHETIC BIOPOLYMER COMPLEXES: MODIFIED POLYSACCHARIDES AS 

ORAL DRUG NANO-CARRIERS FOR ENHANCEMENT OF ORAL BIOAVAILABILITY 

 

2.1. INTRODUCTION 

Oral drug delivery remains the most convenient and preferred route of pharmaceutical 

administration. Historically, progress has been made in oral drug delivery technology, 

including controlled release of various active pharmaceutical ingredients (APIs). Currently, 

the major focus in drug delivery systems is designing cheap and non-conventional oral drug 

delivery systems with improved pharmacokinetics (Vashista et al., 2012). Conventional 

capsules or tablets move through the gastrointestinal tract (GIT) and release drug in non-

specific regions within the GIT (Helliwell, 1993). Therefore, the design of specifically targeted 

drug carrier systems is a pre-requisite to advance the oral bioavailability of various drug 

molecules. Nano-engineered drug carrier systems are believed to have the ability to enhance 

delivery of variety of APIs orally, by improving their bioavailability and they gained substantial 

recognition in this pharmaceutical research. 

 

Polymeric nanoparticles have thus achieved greater significance in pharmaceutical research 

because of their capability to distribute APIs in various parts of the body for prolonged 

periods of time. Polymeric nano-carriers can be fabricated from synthetic or natural 

polymers (Bala et al., 2004) or semi-synthetic polymeric (Adikwu, 2009). The usage of 

different polymeric resources and their handling permits conjoining of their physical and 

chemical properties (e.g. surface charges, hydrophobicity/hydrophilicity). Polymeric 

nanoparticles flexibility permits them to be used in delivery of extensive variety of APIs 

intended for oral delivery (Chan et al., 2010). The mechanism of enhanced oral drug 

absorption from polymeric nanoparticles involves the extension of the drug residence time in 

the GIT, shielding of the APIs from the harsh environment of the gut, endocytosis of the 

particles and/ or an enhanced permeability effect of the polymer. 

 

Each prepared oral polymeric nanoparticulate system (Bala et al., 2004; Adikwu, 2009) is 

designed to possess enhanced properties. However, both natural polymers and synthetic 

polymers individually have limitations in performance as nano-based delivery systems. 

Table 2.1 describes the limitations of synthetic and natural polymers over semi-synthetic 

polymers in drug delivery. Interest has increased greatly in material science and 

pharmaceutical research for combining synthetic and natural polymers into hybrid polymer 

structures known as SSBC. The functionality of biopolymers or natural polymers can be 
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combined with the synthetic polymers versatility and adaptability, thus generating a new 

type (class) of polymer constituents harnessing the best of both worlds (Deming, 1997; 

Hawker et al., 2001; Matyjaszewski and Xia, 2001; Cunliffe, et al., 2004; Vandermeulen and 

Klok, 2004; Alarcon et al., 2005; Moad et al., 2005; van Hest, 2007). 

 

These SSBC are currently exploited in drug delivery systems as carriers/nano-carriers for a 

variety of drugs in an attempt to overcome limitations associated with both synthetic and 

natural polymers as well as poor solubility of many of the drug molecules. This chapter 

primarily focuses on the application of SSBC as nano-carriers for oral delivery of drugs. 

Insight into the factors influencing their solubility and permeability leading to high oral 

bioavailability, such as physicochemical properties, is provided; and their methods of 

preparation are also discussed in detail. 

 

Table 2.1: Limitations and benefits of natural polymers, synthetic polymers and semi-
synthetic biopolymer complexes 

Polymers Limitations Benefits  

Natural polymers Natural polymers have poor 
thermal and mechanical 
properties (Sionkowska, 2011), 
hence their native structures 
are easily destroyed during high 
temperature processing thereby 
limiting their use in the 
biomedical field. 
 

Have good biodegradability and 
biocompatibility (Giusti et al., 
1993). 

Synthetic polymers Synthetic polymers contain 
impurities or other compounds 
that affects biocompatibility 
(Sionkowska, 2011). 
Environmental pollution by 
synthetic polymers from 
developing countries has also 
been identified in dangerous 
proportion (Joshi and Patel, 
2012).  

Synthetic polymers are flexible in 
structural make up and also 
flexible with the manner in which 
molecules are related (Deming, 
1997; Hawker et al., 2001; 
Matyjaszewski and Xia, 2001; 
Moad et al., 2005). They have a 
very good thermal stability and 
mechanical properties compared 
to most natural occurring 
polymers (Giusti et al., 1993). 
 

Semi-synthetic biopolymers The limitation of semi-synthetic 
polymers depends on the 
particular mixture or 
combination of synthetic and 
natural polymers. 

Natural polymers modified by 
blending/grafting/crosslinking 
amongst others with synthetic 
polymers or synthetic chemicals 
result in new materials that 
contains properties of both 
polymers, thus possessing good 
mechanical and thermal 
properties, while at the same 
time being biocompatible 
(Sionkowska, 2011). 
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2.2. ORAL NANO-POLYMERIC ADMINISTRATION OF DRUGS EMPLOYING SEMI-

SYNTHETIC POLYMER COMPLEXES 

A noteworthy study was conducted for the preferred route of administration for patients with 

breast cancer. The investigation on the study of delivery of anticancer drugs revealed that 

the oral route of administration is preferred by patients over intravenous therapy (Banna et 

al., 2010). Liu and co-workers (1997) stated that oral administration is preferred by ~89% of 

patients over intravenous administration, primarily because of home-based therapy. It was 

also reported from a study on patient’s preference about the route of administration that 

~2.7% patients prefer to be treated using parental route, whereas almost ~78.7% prefers oral 

route and ~18.6% had with no preference (Wojtacki et al., 2006). Oral delivery of drugs has 

huge challenges originating from their unusual physicochemical properties, and physiological 

barriers such as gastrointestinal instability leading to low bioavailability of APIs. For example, 

in the case of drugs such as docetaxel, paclitaxel amongst others, the available drug content 

detected in systemic circulation (oral bioavailability) is only in the range of 5-20% after oral 

administration.  

 

Oral administration of drugs such as insulin also poses a huge challenge. Insulin is mainly 

parentally administered and this form of administration suffers from stress generated from 

the various regimens, such as pain, skin bulges, allergic reactions, common infections 

amongst others. The invasive parenteral (injected) route of administration of insulin is also 

associated with poor pharmacodynamics, weight gain and delivery of drugs to the wrong 

tissues. An alternative transport path is essential so as to reach the circulation by non-

invasive ways. Currently, in the case of insulin, advanced nanotechnology has been applied 

to various modified natural polymers (SSBC) (Abbad et al., 2015) and natural/biological 

polymers as delivery systems for problems associated with its oral administration 

(Mukhopadhyay et al., 2012). 

 

2.2.1. Semi-Synthetic Complexes as Oral Drug Permeation/Absorption Enhancer 

Most of the polysaccharides used in design of drug delivery systems are bioadhesive 

polymers (e.g. chitosan, hyaluronic acid, oxidised dextran, starch) (Hoffmann et al., 2009; 

Yerushalmi and Margalit, 1998). Nanoparticles formulated from these modified 

polysaccharides (bioadhesive) systems (complexes) adhere to the mucosa surface of the cell 

membrane resulting in the modification of the properties of the mucosa surface through 

polymer bioadhesion; this will increase the residence time and contact of the drug with the 

epithelium. Consequentially, the drug amount (concentration) will increase at the 

absorption/permeation site; this will minimize drug degradation and dilution by the luminal 

contents, leading to the enhancement of the drug absorption into the circulation system. 
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Semi-Synthetic Biopolymer Complexes are mainly composed of two or more polymeric 

components as mention before, one of the components can be either bioadhesive (e.g. 

polysaccharides) or a permeation enhancer (e.g. (2-Hydroxypropyl)-𝛽-cyclodextrin). Briefly, 

the intestinal mucous permeation enabled by absorption enhancers involves membrane 

agitation which increases the permeability of drugs (Moideen and Kuppuswamy, 2014).  

  

2.2.2. Factors Influencing Drug Release after Oral Administration 

Oral drug release is influenced by solubility of the drug in relation to the ratio of dispersed 

and continuous phase, the concentration of polymer to drug (Niwa et al., 1993; Niwa et al., 

1994), polymer concentration and type of polymer (Dhakar et al., 2010). Hence, the amount 

of drug loaded has a profound influence on the drug release kinetics (Makadia and Siegel, 

2011). Certain drugs have the capability to degrade the polymer matrix either through bulk 

erosion or by surface degradation, thereby controlling the rate of polymer degradation. Even 

though there is no significant correlation between the drug chemistry and hydrophilicity to the 

release kinetics, in order to explain the drug release mechanism of certain drug delivery 

systems, one must consider the effect of chemical properties of drugs on biodegradability of 

the polymers (Makadia and Siegel, 2011). 

 

2.3. POLYMERIC PHYSICOCHEMICAL AND MECHANICAL ATTRIBUTES THAT 

INFLUENCE ORAL BIOAVAILABILITY 

The physical and chemical characteristics of polymeric micro/nano-particulate delivery 

systems affect the absorption and possess an essential role in the internalization of particles 

through the GIT membrane. Some of these attributes are the shape and size of particles, 

particle surface properties, as well as excipients, amongst others (Thanki et al., 2013). The 

excipients (e.g. polymers or chemicals) exist in many forms and were considered inert due to 

the fact that they do not produce any therapeutic action, but modify the drug’s 

pharmacokinetics. It is known that excipients do in fact influence the rate and the extent of 

drug absorption, hence drug bioavailability (Vilar et al., 2012). 

 

2.3.1. The Influence of Size on the Internalization of Particles 

Particle size of the drug loaded biopolymeric or SSBC carriers do influence the amount of 

drug that reaches the circulatory system; consequently it influences bioavailability (Makadia 

and Siegel, 2011). It is well established that a small change in size, atomic arrangement or 

molecular structure of particles can have an intense impact on their behaviour and chemical 

properties (Guihen, 2013). The internalization of particles within the intestine and the degree 

of absorption depend mostly on the particle size, hence, the extent of drug absorption 

increases with a decrease in the size of particles and surface area specificity. It has been 
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shown that the ratio of surface area to volume has significant effects on degradation. The 

increase in surface area increases the degradation rate of the matrix (Makadia and Siegel, 

2011). Jani and co-workers (1990) examined the size-dependent internalization of 

nanoparticles through rat intestine by analyzing their presence in the blood system and their 

delivery to different organs. After administration of the same dose of nanoparticles, (34% of 

nanoparticles) were detected in the intestinal mucosa and gut-associated lymphoid tissue 

having a size of 50nm; whereas this decreased to 26% detection for nanoparticles of a size 

of 100nm; and for 500nm particles, only 10% were found in the intestinal tissues (Francis et 

al., 2004). However, the internalization of large particles (~1µm in diameter) was found to be 

marginal. These micro-particles were mostly found in the lymph nodes of the small intestine. 

Desai and co-workers (1996) observed similar findings for internalization of nanoparticles 

fabricated from poly (lactide-co-glycolic acid) (PLGA). It was observed that 100nm 

nanoparticle internalization was improved compared to micro-particles of 1 and 10µm 

diameter (Desai et al., 1996). Consequently, size is a significant parameter in controlling the 

internalization of nanoparticles into the GI membrane, and as a result, the required size for 

the internalization of particles must be smaller than 500nm (Francis et al., 2004). The 

preferred nano-carrier range for internalization in the GI tract are particles in the size range of 

50-300nm, with a hydrophobic surface and positive zeta potential (Thanki et al., 2013). In 

one study, it has been reported that the solvent choice and the aqueous solution ratio to 

organic solvent can also control the size of the nanoparticles (Nordstrom, 2011).  

 

2.3.2. The Composition Effect or Chemical Effect 

There is extensive literature available signifying that the hydrophobicity of the particles has a 

major role in drug absorption. Francis and co-workers (2004) reported that particles that are 

hydrophobic e.g. poly (styrene) (Murayama et al., 1993) absorbs drug more readily than poly 

(lactide-co-glycolic acid), a less hydrophobic polymer compared to poly (styrene) (Francis et 

al., 2004). This affects the bioavailability as well, since very polar molecules have difficulties 

crossing biological membranes whilst hydrophobic molecules more readily partition across 

biological membranes (Mansy, 2015). 

 

2.3.3. The Carrier Geometry Effect 

In drug delivery field there is a great interest in the role played by the carrier geometry in its 

functions such as drug loading and release, stability, toxicity and ultimately delivery 

performance. A spherical geometry is the most common geometry in nano drug delivery 

systems. Theoretically non-spherical drug carriers can provide great benefit for drug 

targeting. Firstly, the larger surface area to volume ratio of a non-spherical nano-carrier leads 

to a large surface area available for conjugation of targeting moieties, hence avoiding 
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limitations such as retention. Correspondingly, the smaller nano dimension of non-spherical 

nano-carriers allows effective perfusion through capillaries, potentially enhancing access to 

varied targets that are inaccessible by larger spheres. This results in the enhancement of 

bioavailability (Simone et al., 2008). 

 

2.4. PREPARATION OF SEMI-SYNTHETIC BIOPOLYMER COMPLEXES 

Semi-Synthetic Biopolymer Complexes can be prepared by modification of natural polymers 

through blending/crosslinking/grafting amongst others with synthetic polymers or synthetic 

chemicals. 

 

2.4.1. Blending 

Blending is a convenient route to develop new copolymers or new polymeric materials with 

improved mechanical properties as well as biocompatibility of the individual polymer 

components. The new material or copolymer is called a biosynthetic, bio-artificial, or SSBC 

material (Sionkowska, 2011). Blending of biopolymers or natural polymers with synthetic 

chemicals or synthetic polymers has been reviewed and carried out in various investigations 

(Giusti et al., 1993; Cascone. 1997; Werkmeister et al., 1998; Sionkowska, 2003). 

 

Blending is also an alternative way of tailoring hydrophilicity/hydrophobicity of the matrix 

without incurring any major changes in the mechanical reliability. For the blending of 

polymers, the two polymers are mixed to form one versatile material. The same solvent can 

be used to dissolve the polymers and/or the polymers can be mixed in the molten state. 

Solid-phase modification of polymers is one of the more promising methods because of the 

combined action of shear deformation and high pressure on the mixture of solid components 

(Sionkowska, 2011). The conditions allow the precursor polymers to be subjected to plastic 

flow with unlimited strain. The high temperature and pressure employed can damage 

proteins. Protein denaturation can be avoided by preparing biopolymer blends that are 

solubilized in the same solvent. 
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Figure 2.1: Collagen/PVP polymeric blend formed through hydrogen bonding.  
 

For the synthesis of SSBC, the basic properties of the synthetic and natural/biological 

polymers need detailed understanding. Miscibility of different polymers will determine the 

blending characteristics of the complex (Sionkowska, 2003). Blending methods are 

advantageous because they are cheaper and it takes less time for the development of new 

materials that have improved properties. A supplementary benefit of polymer blends is the 

fact that it is easy to change the blend composition to improve their properties (He and Inoue, 

2004). The process of blending of collagen (natural polymer) (Sell et al., 2010) with 

polyvinylpyrrolidone (PVP) (synthetic polymers) (Kowalonek and Kaczmarek, 2010) is shown 

in Figure 2.1. 

 

2.4.2. Crosslinking 

Crosslinking of natural polymers with synthetic polymers or synthetic chemicals is another 

method of preparing SSBC. For example, modification of hyaluronic acid (HA) with 

functionalized hydrazides (via crosslinking), as visualized in Figure 2.2, furnishes an 

adaptable and mild method for generating new biomaterials for drug delivery. For example, 

crosslinking has demonstrated the ability to develop novel biomaterials by chemical 

modification of hyaluronic acid (Prestwich et al., 1998). 

 

Starch is another natural carbohydrate polymer that is used in many aspects of life, as a 

foodstuff, in chemical sectors, as well in pharmaceutical research. Starch is mostly used as a 

tablet excipient, but not in its unmodified form (Adikwu, 2009). In the past years, structural 

modification of starch has been reported for the improvement of its utility in various 
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applications. A number of techniques have been employed in starch modification; this 

involves the addition of chemicals which provide a novel chemical functionality and/or shape, 

size change, or alterations to the structure of molecules of starch. In current pharmaceutical 

research, starch plays a huge role in the development of novel drug carriers (Adikwu, 2009). 

Starches are mainly hydrophilic with long chains which increase the viscosity, independent of 

temperature. Amylose chains have an inner hydrophobic section and have a tendency of 

coiling up into helices (spirals). Hence, within the helix it allows the entrapment of fats, oils, 

aromatics and hydrophobic drugs. A few examples of crosslinked starch are rice starch 

crosslinked with epichlorohydrin for altering the properties of rice starch (Xiao et al., 2012), 

waxy maize starch crosslinked with phosphorous oxychloride (POCl3), and citric acid 

crosslinked starch to improve tensile strength, thermal stability and decrease dissolution of 

the starch films in water (Reddy and Yang, 2010).  
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Figure 2.2: Modified and Crosslinked HA with Adipic Dihydrazide (ADH). 
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2.4.3. Grafting 

Grafting is an additional method of preparing SSBC, where one or more blocks of 

macromolecule side chains are connected to the main polymer chain (Athawale and Rathi, 

1999). Grafted copolymers consist of “a polymer backbone with adjacent covalently 

connected chains”. The side-chain and the backbone polymers both can be copolymers or 

homopolymers (O’Connell et al., 2008). The principle of polymer grafting is based on 

generation of the active sites, such as functional groups or free radicals on the backbone. 

Figure 2.3 shows an example of alginic acid grafted with poly (acrylamide) for the 

modification of alginic acid physicomechenical properties. 

 

They are several methods suggested for the preparation of graft copolymers by conventional 

chemical techniques (Battaed and Tregear, 1967; Burlant and Hoffmann, 1960). Formation of 

an active site in the precursor polymeric backbone is a favoured path in most methods of 

polymeric grafting. This active site (functional/chemical group or free radical) may be 

involved via condensation or an ionic polymerization process. Ionic polymerization takes 

place either in a substantial amount of alkali metal hydroxide and/or in hydrous medium. The 

chemical graft copolymerization method uses chemicals that act as initiators to produce 

active sites on the polymeric backbone. The use of different redox initiators such as string 

bases, Lewis acids and metal carboxyls has been reported for chemical grafting (Misra and 

Dgra, 1980; Chiang Wy, 1996; Cho and Lee, 2002; Hsu and Pan, 2007). 

 

 
Figure 2.3: The chemical structure of an alginate graft copolymer. 
 

Other methods that are adopted to prepare graft copolymers are electron beam or gamma 

ray irradiation, microwave irradiation and conventional redox grafting (Wong, 2011). 

Microwave irradiation was preferred amongst these methods for grafting and falls under the 

concept of green chemistry, where additional free radical initiators can be avoided, with no 

significant steric hindrance. Nonetheless, microwave grafting for alginate copolymerization is 

employed less often than the redox approach (Wong, 2011). 

 



17 
 

2.5. SYNTHESIS OF SEMI-SYNTHETIC BIOPOLYMERIC NANO-COMPLEXES AND 

DRUG LOADING 

Nano-complexes or nanoparticles of SSBC for oral administration of drugs are synthesized 

using different methods, such as micro-emulsion, self-assembly (reverse micelle formation), 

emulsified solvent diffusion, emulsion-droplet coalescence, complex coacervetion/solvent 

evaporation, ionic gelation, and polyelectrolyte complexation (PEC). Most of these methods 

are mild and simple hence maintaining the drug integrity (Mukhopadhyay et al., 2012). Drug 

loading into the nano-polymeric copolymers or polymers can be achieved via two methods. 

In the first method, the drug is incorporated at the same time or during the synthesis of the 

nano-polymeric formation; and in the second method, the drug is adsorbed after the 

preparation of the nano-polymeric system, by incubating the nano-polymeric system in the 

solution of the drug. However, it was noted that a greater amount of a drug was entrapped 

when using the incorporation approach (first method) compared with adsorption (second 

method) (Alenso et al., 1991; Ueda et al., 1998). Though, choice of a suitable method also 

depends on the solubility properties of the drug and polymeric materials used. Figure 2.4 

shows an overview of polymeric nanoparticles’ preparation. 

 

Figure 2.4: Schematic overview of preparation and drug incorporation into semi-synthetic 
polymeric nanoparticles (Kumari et al., 2010). 
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2.6. BENEFITS OF THE SEMI-SYNTHETIC BIOPOLYMER NANO-COMPLEXES FOR 

DRUG DELIVERY 

A group of chemotherapeutic, antifungic, antiparasitic and hormonal drugs are poorly soluble 

in water. This is a limiting factor in their use and requires the implementation of specially 

designed nanostructures for improving their delivery. Nano-encapsulation of such poorly 

soluble drugs is significant, since this may decrease toxicity and side-effects related with 

these drugs (Christian and Schwendeman, 2008). Novel nano-enabled drug distribution 

carriers need to be advanced and improved for them to effectively deliver these drugs (Yuri, 

2002). Most new drug molecules have low molecular weights. It has being predicted that up 

to 70% of New Chemical Entities (NCEs) show poor solubility. Researching alternative 

delivery systems during the early development phase of the drug is therefore significant to 

avoid pitfalls of the drug delivery to the body. 

 

Many approaches have been established to overcome the hydrophobicity of drugs using 

polymeric and lipid systems. Even so, many hydrophobic drugs still present multiple side-

effects and high toxicity not only associated with their low solubility, but also with the method 

of drug loading in the delivery system. Designing amphiphilic or SSBC as a hydrophobic drug 

loading system is beneficial, due to the fact that the hydrophobic drug can be entrapped in 

the core (Figure 2.5) and this nano-system will be able to reduce the insolubility of these 

hydrophobic drugs (Trimaille et al., 2006). Lipid-polymer complexes are also used since they 

are compatible with the biological system and pose minimal risk of toxicity, or rejection by the 

body’s immune system (Cheow and Hadinoto, 2011). 

 

 
Figure 2.5: Schematic representation of the encapsulation of hydrophobic drugs: (a) 
hydrophilic polymer (b) hydrophobic polymer (c) encapsulated hydrophobic drug. 
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The development of different biopolymer drug delivery systems such as those based on 

polysaccharides (Oh et al., 2009), proteins such as albumin, and aminopolysaccharides such 

as chitosan have attracted great attention in drug delivery research. The majority of these 

designed SSBC are amphiphilic (Pandey et al., 2011). Therefore, amphiphilic nano-systems 

reduce the insolubility of poorly water soluble drugs, leading to an increase in bioavailability 

(Trimaille et al., 2006). Most of these amphiphilic systems are micelles; hence their 

thermodynamic stability depends on their critical micelle concentration (CMC). A stable 

thermodynamic system has a concentration above the CMC. The hydrophilic-lipophilic 

balance (HLB) of the complex is largely affected by the CMC; it has being stated in many 

studies that: if the hydrophilic component is kept unhanged (constant), enlargement 

(increase) of the hydrophobic component will result in a low CMC compared to the complex 

concentration. This low CMC allows the complex to retain it micelle structure even after a 

series of dilutions. These micelle complexes retain their drug content and integrity before 

reaching the site target because of their slow dissociation, this is beneficial in the 

enhancement of oral bioavailability (Xu et al., 2013). 

 

2.7. EXAMPLES OF SEMI-SYNTHETIC BIOPOLYMER COMPLEXES AS DRUG NANO-

CARRIERS  

Polysaccharides contain various functional or reactive groups such as hydroxyl, carbonyl and 

amino groups (Lee et al., 2000), which makes them easy to modify to enhance their 

properties. To date, nanopolymeric drug delivery systems have been developed using 

natural, synthetic or SSBC (Sarmento et al., 2007). Polysaccharides possess favourable 

qualities as drug carriers (Sinha and Kumria, 2001), as most polysaccharides are hydrophilic, 

non-toxic, biodegradable, and highly stable. There are various reports about polysaccharides 

and their modified versions as drug nano-carriers (Rubinstein, 2000; Vandamme, et al., 

2002; Lemarchand et al., 2004; Soumya et al., 2013). In this review, three currently used 

modified polysaccharides, alginate, hyaluronic acid, and chitosan, having application in the 

formulation of SSBC for nano-systems formulation are discussed in detail below. Table 2.2 

highlights additional SSBC, their methods of preparation and route of administration. Routes 

of administration in addition to the oral route are provided as a point of comparison. 
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Table 2.2: Overview of the semi-synthetic biopolymer nano-complex-based bioactive 
delivery systems 
Semi-Synthetic 
Biopolymer 
 

Bioactive Modification 
Method 

Non-System Rout  
of 
administration 

 References 

Poly(oligo)sacchar
ide grafted poly(D, 
l-lactide) 

DNA Reductive 
amination reaction 

Nanoparticles Intravenous 
 
 
 

 (Maruyama et al., 
1997) 

Pullulan-grafted-
Poly(l-lactide) 

Doxorubicin 
 
 

Free radical 
polymerization.  
Self-assembled 
amphiphilic 
copolymer system 
 

Nanoparticle 
Micelles 

Intravenous 
 

 (Zhang et al., 2013) 

Dextran-g-Poly(e-
caprolactone)(PC
L) 
 

BSA and Lectins Coupling agent Nanoparticles Oral 
 

 (Rodrigues et al., 
2003) 

Chitosan-g-
Methoxy 
Poly(ethylene 
glycol) 

Anionic drug Oxidation method Nanocarrier 
micelles 

intravenous 
 

 (Yang et al., 2009) 
and (Lin et 
al.,2008) 
 

Chitosan-
tripolyphosphate 

Hydrophobic/hy
drophilic drugs 

Cross-linking Gel/ 
nanoparticles 

Intravenous  (Liu et al., 2008) 
 

Poly(DL-lactide-
co-glycolide)-graft 
pullulan(PuLG) 

Doxorubicin/Adri
amycin 

Free radial 
polymerization 

Micelles. Intravenous  (Zhang et al., 2013) 

 

2.7.1. Hyaluronic Acid Derivatives as Semi-Synthetic Biopolymer Complexes for 

Nanocarrier Formulation 

Hyaluronic acid (HA) is a natural polysaccharide comprising of interchanging 1, 4-linked units 

of 1, 3-linked N-acetylglucosamine and glucuronic acid. Hyaluronic acid is immune-neural, 

mainly hydrophilic and has biodegradable short half-life; hence it is an ideal drug carrier for 

delivery of a wide range of bioactive materials. Hyaluronic acid biodegradable half-life is 

short. Hyaluronic acid can easily undergo chemical modification or chemical reactivity, due to 

its numerous functional groups (─CO2H and ─OH) to form a new class of polymeric materials 

(Oh et al., 2010; Xu et al., 2012). Different chemical crosslinkers can be attached to HA 

allowing a wide range of potential methods for the fabrication of novel copolymeric systems 

for tissue engineering (Prestwich et al., 1998). New drug bio-carriers can also be developed 

from the modification of HA and their preparation conditions methods are mild and versatile. 

As discussed in Section 2.4.2, HA crosslinked with polyhydrazides and further incorporation 

of therapeutic drugs leads to the formation of novel biomaterials for drug delivery. 

 

A number of macromolecular prodrugs are already developed as HA-drug conjugates (Lapcik 

et al., 1998; Toole, 2004). Deng and co-workers (2012) investigated HA modified with 

tetraethylene glycol for the attachment of cholesterol, thus forming an amphiphilic SSBC 

(Deng et al., 2012). The formed amphiphilic SSBC, as shown in Figure 2.6, was used to 

form micelles loaded with doxorubicin hydrochloride drug, a poorly water soluble anticancer 

http://www.sciencedirect.com/science/article/pii/S0169409X08002287
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drug. It was observed that this drug delivery system enhanced the permeation and retention 

effect in the tumour tissue and also enhanced the solubility of the hydrophobic drug, since 

many anti-cancer drugs are poorly soluble in water. This carrier led to the enhancement of 

the drug bioavailability by increasing the drug release with 20% compared to hyaluronidase 

free micelles during the in vitro drug release study.  

 

Even though there is substantial literature reporting on modified HA as a drug carrier 

specifying the benefits such as enhancement of permeability at the tumour site and the 

solubility enhancement of hydrophobic drugs, only a few mentioned the chosen route of 

administration (Deng et al., 2012).  

 

 

Figure 2.6: Schematic representation of DOX loaded Cholesterol-HA micelles (Deng et al., 

2012). 
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2.7.2. Chitosan Derivatives as Semi-synthetic Biopolymer Complexes for Nanocarrier 

Formulations 

The available hydroxyl and amino groups of chitosan enable it to be modified easily to form 

derivatives of chitosan for oral drug delivery with desired properties (Werle et al., 2009). 

Chitosan has been used in gene and protein delivery, especially as oral absorption 

enhancers (Khan and Khiang, 2002). Unmodified chitosan has limitations since at low pH, 

chitosan is highly soluble (Adikwu, 2009). 

 

Lee and co-workers (1998) developed a hydrophobically modified chitosan possessing 5.1 

deoxycholic acids per 100 anhydroglucose, showing self-assembling properties upon 

sonication. Hence, these self-assembling hydrophobic properties, modified chitosan, having 

an average diameter of 160nm, complexing with DNA, leading to a larger complex with the 

mean diameter of 300nm. Therefore, they are categorized under nanoparticles and 

considered to be the best delivery system in transferring genes in mammalian cells. They 

solve the problem associated with most gene delivery systems (e.g. viral vector) (Lee et al., 

1998). 

 

Chitosan has been mostly used as a biopolymer for nanoparticle preparation among the 

various natural polymers (Allemann et al., 1998), and it is highly exploited for oral insulin 

delivery leading to valuable outcomes for both in vitro and in vivo systems. For the design of 

protein/peptide oral nanoparticulate delivery systems (such as insulin), chemically-modified 

chitosan derivatives are more commonly employed than natural chitosan. Fernandez-

Urrusuno and co-workers (1999) supported the concept that nanoparticles of chitosan maybe 

more efficient at enhancing protein uptake than chitosan solution (Fernandez-Urruuno et al., 

1999). Hence, greater cell uptake and binding was observed from chitosan-insulin 

nanoparticles after incubation with Caco-2 cells compared with chitosan-insulin solution. 

Therefore, oral administration of cyclosporine A encapsulated in chitosan hydrochloride 

nanoparticles to dogs, led to relative bioavailability of >73% compared with the commercial 

microemulsion (Neoral®) (Bowman and Leong, 2006). Chitosan’s fundamental skeleton is not 

changed by the chemical modification, but its modification brings about improved properties, 

such as enhanced permeation and sustained release of drugs (Chaudhury and Das, 2011). 

Chitosan nanoparticles have been reported great carriers for oral insulin delivery systems. 

Notable results have been observed in SSBC nanoparticle grafts of poly (ethylene glycol) 

(PEG) with trimethyl chitosan (TMC) (PEG-g-TMC), enhancing oral biological activities after 

administration. Lin and co-workers (2007) also produced nanoparticles prepared from 

chitosan with poly (γ-glutamic acid) (γ-PGA) for oral insulin administration. It was found that 

this novel nanoparticle delivery system may permanently open the tight junctions between 
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the intestinal epithelial cells, overcoming the obstacle associated with the delivery of oral 

insulin solution without excipients. As observed from the oral administration of insulin from 

the diabetic rat model, rats that were orally administered with insulin-loaded nanoparticles 

significantly reduced the level of glucose by approximately 40% compared to rats that orally 

received insulin solution. A number of chitosan blends or grafts have been highlighted as 

attempts at enhancing permeability, leading to increased oral bioavailability (Mukhopadhyay 

et al., 2012). 

 

Advantages in the development of chitosan nanoparticulate systems includes the absence of 

hazardous organic solvents during their preparation, since chitosan is soluble in aqueous 

acid solutions, and they contain the amine functionality that can be used for crosslinking, as 

well as possessing low toxicity. It has been reported to be non-toxic in vivo in rats up to 10% 

of the diet (Arai et al., 1968). For the development of new gene and GI delivery systems, 

chitosan is the best choice of polymer. Chitosan polymer can be used as an absorption 

enhancer as mentioned and has bioadhesive/mucoadhesive properties for oral 

administration. Illum and co-workers (1994), demonstrated that chitosan has permeation-

enhancing potential. In vivo studies in rats confirmed the intestinal permeation enhancement 

of peptide drugs due to the co-administration of chitosan hydrochloride (Luessen et al., 

1996). 

 

Lactic acid-grafted chitosan nanoparticles were developed for prolonging drug release, 

achieving high drug loading. Modification of chitosan by grafting with lactic acid can be 

undertaken at neutral pH, providing an extra advantage for the uniform incorporation of drugs 

and proteins with minimal or no denaturization in the matrix structure (Kosta et al., 2012).  

 

For diseases such as colon cancer, it is important to achieve high concentrations of the 

active ingredient in the large intestine. Chitosan has been assessed as a potential drug 

carrier for colon–specific delivery. Modification of chitosan by crosslinking with succinic 

anhydride results in a SSBC delivery system. 

  

2.7.3. Alginate Derivatives as Semi-Synthetic Biopolymer Complexes for Nanocarrier 

Formulation 

Alginate (ALG) is a non-branched binary polysaccharide, which in its alginic acid form, has 

highly reactive carboxylic groups available for modification for various applications with 

chemical flexibility, making it possible for further modification to tailor its properties (Pawar 

and Edgar, 2012). Alginate is also extensively investigated for drug delivery system design 

(Sonia and Sharma, 2011). Alginate has very good cytocompatibility and biocompatibility, 
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biodegradation and a number of chemical and physical properties, making them suitable for 

many applications (George and Abraham, 2006; Khotimchenko, 2004). Alginate is one 

among the most explored biomaterials. The main disadvantage of ALG in drug delivery 

development is their poor cell adhesion. Alginate is pH-sensitive; hence encapsulated drugs 

are not released at low pH (gastric environment) and shrink under this condition (Sonia and 

Sharma, 2011). 

 

Grafting is also used to modify native chains of ALG to bring about new properties, such as 

targeting, hydrophobic/hydrophilic bioactive encapsulation and sustained drug release. There 

are some drawbacks associated with oral drug formulations prepared from ALG graft 

copolymers. Few clinical studies have been reported concerning the risk or potential of ALG 

as a carrier for the commercial sector. Furthermore, there is little information on comparison 

of the oral formulations comprised of ALG graft copolymer with a non-grafted ALG 

formulation. Regardless of these uncertainties, one can regard the grafting of ALG as a 

means of adding unique properties to a drug delivery system formulated, therefore which are 

not possible by systems obtained from the mere physical mixing of polymers. For example, a 

synthetic polymer poly (acrylamide) was grafted with sodium alginate (Poly (acrylamide)-g-

sodium alginate) to produce hydrogels with higher swelling properties (Wong, 2011). 

 

Though ALG has been used in preparation of oral drug delivery systems, such as tablets, it 

has also been employed in microsphere, microcapsule and nanoparticle formulations (Wong, 

2011; Khotimchenko, 2004; Braga et al., 2005; Sen et al., 2012). Based on the successful 

experience of ALG microparticles, the study of ALG nanoparticles was expected to gain 

impetus due to the benefit of particle size reduction to reach cellular and subcellular 

structures in the gastrointestinal epithelium and subepithelial dome regions that are relevant 

for mucosal vaccination (Borges et al., 2006) and drug transport to the blood stream (Yi et 

al., 1999). However, as opposed to chitosan, literature on ALG nanoparticles is relatively 

scarce. One of the challenges was the modification of production methods to achieve such 

small sizes (Rajaonarivony et al., 1993; Ahmad et al., 2006).  

 

2.8. CONCLUDING REMARKS 

The combination of polysaccharides with synthetic polymers or synthetic chemicals provides 

many possibilities in development and preparation of drug delivery vehicles with specific 

properties and functions. Pharmaceutical industries prefer the development of drugs that can 

be orally administered to patients. Progress in SSBC as nano-carrier systems has been 

made, in terms of understanding molecular interactions implicated in their formation.  
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As reviewed in this chapter, it is observed that a number of semi-synthetic nanoparticulate 

systems are under investigation. The most widely investigated oral polysaccharide nano-

carrier systems are chitosan bio-complexes. Further investigation into the design of SSBC 

and nano-complexes especially as oral drug nano-carriers are necessary. The design of new 

and effective oral nano-enabled drug delivery systems for enhanced drug bioavailability will 

improve effectiveness of already available therapies for the treatment of various diseases. It 

is anticipated that in the next decade, some of these new approaches will reach clinical 

evaluation. 
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CHAPTER THREE 

SYNTHESIS, DEVELOPMENT AND CHARACTERIZATION OF A NOVEL SEMI-

SYNTHETIC BIOPOLYMER COMPLEX AS AN ORAL NANO-CARRIER SYSTEM 

 

3.1. INTRODUCTION  

Permeation and solubility enhancement of orally administered drugs in order to improve their 

solubility are amongst the major challenges experienced in pharmaceutical research. The 

use of both synthetic and natural polymeric materials have shown improvements in 

permeation and solubility of poorly permeable and soluble oral drugs as discussed in 

Chapter 2. However, using synthetic or natural polymers independently as carriers poses 

certain limitations (Sionkowska, 2011; Joshi and Patel, 2012), such as the poor mechanical 

and thermal properties of natural polymers (Sionkowska, 2011), therefore at higher 

processing temperature their structures can be easily destroyed, limiting them from being 

used in the biomedical field. On the other hand, synthetic polymers contain compounds or 

impurities that can affect their biocompatibility (Sionkowska, 2011). Interests in merging 

synthetic polymers with natural polymers into hybrid polymeric structures have increased 

greatly in scientific and pharmaceutical research. Hence, the functionality of natural polymers 

can be integrated with adaptability and versatility of synthetic polymers, resulting in a new 

class of polymeric material (van Hest, 2007) called Semi-Synthetic Biopolymer Complexes 

(SSBC), which harnesses the properties of both polymeric types. As a result of the growth in 

synthetic methodologies, the ability to combine natural and synthetic polymers to create well-

defined hybrid materials has improved greatly (van Hest, 2007; Sionkowska, 2011). 

 

A natural biopolymer, hyaluronic acid (HA), a synthetic polymer, poly (acrylic acid) (PAA), 

and a synthetic chemical (2-hydroxypropyl)-𝛽-cyclodextrin (HP-𝛽-CD) (Chouhan and Saini, 

2014), were employed in this research for the design of a novel SSBC (HA─PAA─HP-𝛽-CD) 

for the improvement of oral solubility and small intestinal permeation of our model drug 

acyclovir (ACV). Acyclovir belongs to the BCS class III according to the Biopharmaceutic 

Classification System, however in other regulatory authorities; it falls within BCS class IV 

(Amal et al., 2008). Acyclovir is an anti-viral drug which is used as an anti-herpes agent for 

the treatment of orofacial, cutaneous, and genetic herpes, and Herpes simplex (type 1) 

keratitis among others (Tomar et al., 2010). Acyclovir is the drug of choice to treat the 

aforementioned diseases, but has a problem of low oral bioavailability (ranging from 10-

20%). Low solubility in the GIT and permeation of ACV across the human GIT epithelium are 

the major factors affecting ACV absorption, leading to its poor bioavailability. 

Consequentially, ACV has to be administered in high doses with frequent dosing, ultimately 
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resulting in various side effects (Tomar et al., 2010). The SSBC has the potential to entrap 

poorly permeable and soluble drugs within its core, while the hydrophilic component of the 

polymeric complex stabilizes the surface when immersed in water and ensuring a prolonged 

circulation-life of the drug within the systemic circulation (Pandey et al., 2011). The SSBC 

was subsequently formulated as a nano-system carrier to potentially increase the permeation 

and solubility of drugs (such as ACV) with low permeation and solubility; consequently 

increasing their bioavailability (Trimaille et al., 2006). 

 

Literature has described numerous chemical modifications of HA designed to improve the 

therapeutic action of drugs and for the development of new chemical products (Schante et 

al., 2011). Hyaluronic acid has been the subject of many previous reviews, focusing on its 

biological functions and medical applications (Laurent and Fraser, 1992; Laurent, 1998; 

Kogan et al., 2007). Hyaluronic acid, among biodegradable polymers (Leach et al., 2003), 

has been represented as an attractive drug delivery polymeric material because of its 

biocompatibility, high responsiveness for specific degradation, and feasibility for 

incorporating drugs into its matrices (Ferguson et al., 2010; Li et al., 2010). Hyaluronic acid 

has also been used in signalling molecules in cell motility, cell differentiation, wound healing, 

and cancer metastasis. Its immunoneutrality makes it an excellent biomaterial building block 

to be employed for drug delivery (Prestwich et al., 1998). Due to its biodegradability, it has 

also been used in the production of hydrogels through cross-linking and chemical 

modification for tissue regeneration and drug delivery systems. Hyaluronic acid often exhibits 

weak mechanical strength with rapid erosion/degradation behaviour in vivo due to its 

extremely high water absorbing properties and enzymatic degradation (Leach et al., 2003). 

Hyaluronic acid is able to influence cell adhesion, migration, aggregation and proliferation 

(Cascone et al., 1995). On the other hand, PAA is a synthetic polymer that becomes ionized 

and dissolves rapidly at high pH, which also contains pendant acidic or basic groups that 

either release or accept protons in response to changes in pH (Qiu and Park, 2012). The 

combination of these two polymers furnishes an enhanced material containing benefit of both 

polymers. Previously, Cascone and co-workers (1995) blended HA with PAA in different 

ratios for the release of growth hormones. Hyaluronic acid was also blended with poly (vinyl 

alcohol) (PVA) to form hydrogels as drug carriers (Cascone et al., 1995). 

 

Polymeric nano-materials (Hans and Lowman, 2002; Bussière et al., 2013) have received 

huge attention as modifiers of pharmacokinetics of pharmaceutical molecules (Lehner et al., 

2013; Mahouche-Cherguia et al., 2013). In medicine, nanotechnology has a constantly 

increasing impact on the preclinical development of drugs (Lehner et al., 2013). There is an 

increase in the number of publications concerning nanoparticles which meet a huge range of 
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market needs and applications (Rao and Geckeler, 2011). Polymeric nanoparticles could 

improve pharmacokinetics for the delivery of drugs, but there is still a huge need to rationally 

design smart nano-carriers capable of effective therapeutically outcomes (Han et al., 2013).  

 

The aim of this research was to improve permeation and solubility of ACV, by encapsulating 

it into the prepared HA─PAA─HP-𝛽-CD polymeric complex composition. A Semi-Synthetic 

Biopolymer Complex was successfully fabricated and loaded with ACV. The prepared ACV-

loaded nanopolymeric complex and its native components were characterised using different 

characterization techniques to confirm the formation of a novel composite. Nuclear Magnetic 

Resonance (NMR) and Fourier Transform Infrared (FT-IR) spectroscopy were employed for 

highlighting chemical transitions, whilst differential scanning calorimetry (DSC) and X-ray 

Diffraction (XRD) spectroscopy were applied to understand the structural modifications that 

occurred with HA modification. Scanning electron microscopy (SEM) and Transmission 

electron microscope (TEM) were used to examine the morphology of the composite.  

 

3.2. MATERIALS AND METHODS 

 

3.2.1. Materials 

Poly (acrylic acid) (PAA) (Mw=1,800g/mol), hyaluronic acid (HA), (2-hydroxypropyl)-𝛽-

cyclodextrin (HP-𝛽-CD) (Mw=1,460g/mol), acyclovir (ACV), N-Hydroxysuccinimide (NHS), 

and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Acetone, methanol (MeOH), dichloromethane (DCM), sodium 

hydroxide (NaOH), hydrochloric acid (HCL), orthophosphoric acid and monobasic potassium 

phosphate (KH2PO4) were supplied by Merck (Pty Ltd., South Africa) and were of analytical 

reagent grade. 

 

3.2.2. Synthesis of Hyaluronic Acid Modification with Poly Acrylic Acid (HA─PAA) 

HA─PAA polymeric complex was synthesized by dissolving HA (8.50mg.mL-1) in a sodium 

hydroxide (0.5M NaOH) solution for 8 hours at room temperature (25oC) to activate the 

hydroxyl (OH) group of the hyaluronic. Poly (acrylic acid) (17mg.mL-1) was completely 

dissolved in double deionized water. The two solutions were combined with moderate stirring 

overnight and the pH was adjusted to 8.5 with NaOH. Precipitation in acetone afforded 

HA─PAA, then centrifuged or filtered, if necessary. The product was washed with methanol 

to remove non-reacted PAA.  
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3.2.3. Conjugation of HP-𝛽-CD onto HA─PAA 

HA─PAA (100mg) was dissolved in 50mL of double deionized water and treated with 50mg 

of EDC and 50mg of NHS for 45 min, in order to activate the carbonyl groups of HA─PAA. 

Separately, 300mg of HP-𝛽-CD was dissolved in 10mL of double deionized water and added 

dropwise into the HA─PAA solution. The reaction mixture was maintained at room 

temperature under constant stirring for 8 hours. The product formed was dialyzed in tubing 

(Mw cut off of 12,000, avg flat width 33mm, diameter 1.3in) (Sigma-Aldrich Pty. Ltd. 

Johannesburg, South Africa) against water for 2 days and freeze dried on a Bulk Tray Dryer 

(Labconco Corporation, Kansas city, Mo, USA). 

 

3.2.4. Preparation of ACV-loaded HA─PAA─HP-𝛽-CD Nanoparticles 

HA─PAA─HP-𝛽-CD ACV-loaded nanoparticles were prepared by completely dissolving 

HA─PAA─HP-𝛽-CD complex (600mg) into 100mL of double deionized water. Acyclovir 

(150mg) was suspended in 30mL of DCM, then sonicated for two minute and poured to the 

reaction mixture to encapsulate ACV to the complex, then moderately stirred to remove 

DCM. The solution was centrifuged (3500rpm) for 10 minutes to remove un-incorporated 

ACV drug. The final clear solution obtained was prepared for drying. 

 

3.2.5. Preparation of Solid Nanoparticles through the Nano-Sprayer Drying Process 

ACV-loaded solid nanoparticles were prepared using a Nano Spray Dryer B-90 (Buchi, 

Switzerland) technique. To gain solid nanoparticles, the clear solution obtained from ACV-

loaded HA─PAA─HP-𝛽-CD solution was filtered through a 0.45µm filter. For the purpose of 

this study, a spray cap membrane of 4.0µm in size was used with 60Hz ultrasonic frequency 

for the actuator. Additional spray drying parameters were set according to Table 3.1. The 

solid nanoparticles produced were collected and weighed to determine the yield. 

 
Table 3.1: Parameters used for the preparation of the nanoparticles 

Temperature (oC) Pressure (nbar) Pump Spray (%) 

85 26–32 4 85 

 

3.2.6. Determination of the Chemical Transitions of the Polymeric Complexes and 

Polymeric Complex Nanoparticles 

The solid nanoparticles produced from the Nano Spray Dryer B-90 (Buchi, Switzerland) and 

all other native polymers were analysed using FT-IR spectrometry (PerkinElmer Spectrum 

100). The FT-IR spectra of the product and native polymers were recorded in the range of 

4000-550cm-1 and used to identify the presence and the absence of specific functional 

groups. 
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3.2.7. Determination of the Thermal Transitions of the Polymeric Complexes and 

Polymeric Complex Nanoparticles 

Differential scanning calorimetry (DSC) (Mettler Toledo, Schwerzernback, Switzerland) was 

used to reveal the thermal properties of the ACV-loaded nanoparticles and all the native 

polymers used to form the loaded nanoparticles. 5–10mg dried samples were weighed into 

aluminium pans under nitrogen atmosphere (Afrox, Germiston, Gauteng, South Africa) with 

200mL/min flow rate acting as the purge gas to decrease oxidation. The sample was then 

heated from 25oC to 300oC at the rate of 10oC/min.  

 

3.2.8. Determination of Thermal Decomposition of the Polymeric Complexes and 

Polymeric Complex Nanoparticles 

The thermal decomposition analysis of the newly formed polymeric complex nanoparticle 

system and all native polymers was determined using a TGA 400 thermogravimetric analyser 

(PerkinElmer Inc., MA, USA). Samples of 10–20mg were placed in a ceramic pan under 

nitrogen atmosphere. The thermograms were obtained and they revealed the thermal 

decomposition properties of the polymers. 

 

3.2.9. Determination of Chemical Interaction of the Polymeric Complexes and 

Polymeric Complex Nanoparticles 

The X-ray patterns of the newly formed polymeric nanoparticle system and all the native 

polymers were determined using X-ray diffraction (XRD) (MiniFlex 600, Rigaku, Japan) and 

nickel-filtered Cu Kα radiation (a voltage of 40 kV and a current of 30 mA). The X-ray 

diffractogram were attained at the scanning rate of 5o/min with the scanning scope of 2θ from 

5oC to 90oC at room temperature. 

 

3.2.10. Determination of the Surface and Structural Morphology of the Polymeric 

Complex Nanoparticles 

 

3.2.10.1. Scanning electron microscopy 

Scanning electron microscopy (SEM) FEI Quanta 400F (Hillsboro, OR. USA) was used to 

examine the surface morphology of the ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles. The 

sample was sputter coated using gold isotope while being mounted on the aluminium spud, 

with an EPI coater (SPI Modele sputter-coater and control unit, hester, PA, USA). After 

coating the nanoparticles for 60s, under constant nitrogen gas conditions, the sample was 

analysed using a FEI Quanta 400F (Hillsboro, OR., USA) electron microscopy. To produce 

high image resolution of the particles, an electron acceleration charge of 20 kV was used. 
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3.2.10.2. Transmission electron microscopy 

Transmission electron microscopy (TEM) (Joel 100 EX, Japan) was utilized to examine the 

structural morphology of the ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles. The 

nanoparticles were re-suspended in methanol (0.5mg/mL) and a pipette was used to place a 

drop of the suspension on a 200 mesh thick formvar copper grid (TABB Laboratories 

Equipment, Berks, UK). The nanoparticles were allowed to be adsorbed on the surface of the 

copper grid in order to determine precise images. 

 

3.2.11. Determination of the Particle Size Distribution and Zeta Potential of the 

Polymeric Complex Nanoparticles 

Size analysis was used to quantify the average particle size. In order to ascertain that the 

spray-dried nanoparticles were within the expected size range of less than 500nm, the 

Zetasize NanoZS instrument (Malvern Instruments Ltd, Malvern, United Kingdom) was 

utilized. Briefly, the particle size was determined after the Nano Spray Dryer B-90 (Buchi, 

Switzerland) process. The dried particles were re-dispersed in water and subjected to a 

sonication (ultra-sound) for 2 minutes (6mm probe, 20 kHz, 50 W), for determination of their 

average size and zeta potential. 

 

3.2.12. Determination of the Yield and Entrapment Efficiency of the Polymeric Complex 

Nanoparticles 

 

3.2.12.1. Nanoparticle yield 

The percentage yield of the product was determined from the weight of the native polymer  

plus the weight of the drug used in the formulation and the weight of the product (ACV-

loaded nanoparticles) and calculated using Equation 3.1: 

 

Percentage yield =   
Practical yield

Theoretical yield
 x 100                      (Equation 3.1) 

 

3.2.12.2. Nanoparticle encapsulation efficiency and drug loading  

A dried powder sample (100mg) of ACV-loaded HA─PAA─HP-𝛽-CD was precisely weighed, 

and subsequently dissolved in NaOH (pH 10) solution over 24 hours. The solution was 

analysed using an Ultra-performance Liquid Chromatographic (UPLC) method as described 

in Section 3.2.15 below. The encapsulation efficiency and drug loading were determined 

using Equations 3.2 and 3.3 (Schafroth et al., 2012). 

 

Encapsulation efficiency =  
the dru g within nanoparticle

initial drug amount
 x 100                  (Equation 3.2) 
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                      (Equation 3.3) 

 

3.2.13. Solubility Determination of ACV  

A Shake Flask Method was used to determine and compare the solubility of ACV in a 

comparator product, and ACV formulated as ACV-loaded nanoparticles. A quantity of 100mg 

of each formulation was placed into a stopped bottle containing 50mL buffer solution of pH 

6.8. The solutions in the bottles were maintained in a shaking water bath for 24 hours at 37oC 

at 75rpm (Waman et al., 2014). The sample contents were filtered through a 0.22µm 

membrane filter, after suitable dilution with the mobile phase; then the amount of ACV in the 

solutions were quantified via UPLC as described in section 3.2.15 below. 

 

3.2.14. In Vitro Release Studies of ACV from the Polymeric Complex Nanoparticles vs. 

a Comparator Product 

ACV-loaded polymeric nanoparticles (2000mg) containing 200mg ACV and a comparator 

product containing 200mg of ACV were separately dispensed in 15mL of pH 6.8 phosphate 

buffer (0.5M KH2PO4/H2PO4). The dispensed solutions were then introduced into the dialysis 

bags (Mw cut off of 12,000, avg flat width 33mm, diameter 1.3in., Sigma Aldrich), which were 

hydrated in double deionized water for 3 hours prior used to remove glycerol and sulphide. 

The tubing’s were tightly sealed at both ends, and were separately suspended in 900mL of 

phosphate buffered saline (PBS), pH 6.8 in USP dissolution apparatus II vessels. To prevent 

floatation of the tubing’s because of the unstable hydrodynamics above the paddles, 

stainless ring-mesh assemblies were used. Samples (0.05mL) were withdrawn at various 

time intervals and replaced with equal amounts of fresh PBS (pH 6.8) phosphate buffer to 

maintain sink conditions. The ACV content was quantified using UPLC method as described 

in section 3.2.15. The ACV release study was undertaken over 8 hours, since ACV has half 

live 3 to 4 hours for a person with a normal kidney functioning. 

 

3.2.15. Ultra Performance Liquid Chromatographic Determination of ACV 

For determination of ACV solubility, loading and release, a UPLC method was developed on 

a Waters® ACQUITY™LC system (Waters®, Milford, MA, USA) coupled with a photodiode 

array detector (PAD), and Empower® Pro Software (Waters®, Milford, MA, USA) using an 

Aquity UPLC® BEH Shield RP18 column having a pore size of 1.7µm. Indapamide (IP) was 

used as an internal standard for the calibration. A mobile phase made of methanol: water: 

orthophosphoric acid (750: 249: 1) was employed with a gradient method which enabled 

accurate detection of the ACV with run time of 4.559 minutes and the internal standard at 

6.509 minutes. The mobile phase flow rate was set at 0.05mL/min with an average pressure 

of 4100psi. The samples were pre-filtered with a 0.22µm syringe before injection into the 
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column. A temperature of 27±0.5oC was managed in the sample and column. Measurements 

were undertaken at a wavelength of 252nm. 

 

The stock solutions of ACV and IP, ranging from 0-0.05mg.mL-1, were prepared using the 

mobile phase of methanol: water: orthophosphoric acid (750: 249: 1) for preparing the 

calibration curve. 

 

3.2.16. Ex Vivo Permeability Studies of ACV from the Polymeric Complex 

Nanoparticles vs. a Comparator product 

A static Franz diffusion cell (Logan Instruments Corp., New Jersey, and USA) (shown in 

Figure 3.1b) was used to comparatively determine the permeation of ACV from the 

formulated polymeric nanoparticulate system and the comparator product through Large 

White Pig intestinal epithelium. For the use of epithelium, a full ethic application was not 

required as the epithelium were obtained from pigs already euthanized for other purposes; 

letter from the AESC committee is located in Appendix D. The harvested tissues were 

immediately immersed in phosphate buffer solution (pH 7.4) and transported to the 

laboratory within 1 hour. The tissues were cut into 5cm strips and sandwiched between the 

receptor chamber and donor chamber for the diffusion cells. The tissue was held together 

with a clamp and the whole system was fixed on the magnetic stirrer, hence the solution 

(PBS pH 7.4 of 12mL) in the receptor compartment was constantly mixed using a magnetic 

stirrer bar. The donor chamber contained 3mL of ACV (1.13mg/mL) loaded in the 

nanoparticles. 

 

Before starting the permeation study, the serosa layer was removed from the pig GIT tissue 

(Figure 3.1a). A sample solution was withdrawn and immediately replaced with the equal 

fresh solution at every pre-determined time interval for the duration of 8 hours. The UPLC 

method as described in section 3.2.15 was used to determine the concentration of ACV in 

the donor compartment solution and receiver compartment. The calculated membrane 

exposure was found to be 1.77cm2 (Boonen et al., 2010). 

 

Figure 3.1: (a) The removal of the serosa layer from the interstitial tissue and (b) Static 
Franz diffusion cell used to undertake the permeation study. 
 

(a) (b) 
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3.2.16.1. Determination of pig intestinal epithelium integrity 

For ex vivo studies, the confirmation of tissue’s integrity is very significant, since any 

compromised tissue integrity during handling will result inaccurate permeation results. The 

intestinal tissue integrity was evaluated prior to and after the experimental procedure through 

ionic conductivity using a SevenMulti S40 pH/electrical conductivity meter (Mttler-Toledo, 

Zurich, Switzerland) (Davies et al., 2004). 

 

3.2.16.2. Calculation of the resistance reduction factor and permeation enhancement 

ratio 

The damage ratio (or Resistance Reduction Factor, RF) was calculated according to 

Equation 3.4 below. 

 

     
  

  
                           (Equation 3.4) 

 

Where R0 = Ratio of the initial resistance value at time 0. 

 Rt = Resistance value of the sample obtained at time t. 

 

 Permeation enhancement ratio was given as defined in Equation 3.5 below: 

 

                        
                

                  
                                  (Equation 3.5) 

    

The cumulative amount of drug permeated across the membranes was calculated in 

accordance to the formula below (Equation 3.6):  

                                      
 

 
     (mg.cm-2)         (Equation 3. 6) 

                                       

Where A = membrane area exposed (cm2), 

           Q = amount of substance crossing membrane (mg). 

 

For the flux values (J) across the membranes, the following formula was used: 

 

   
 

  
    (mg.cm-2.min-1)                                    (Equation 3.7) 

 

Where  A = membrane area exposed (cm2), 

            Q = amount of substance crossing membrane (mg), 

            t = exposure time (min). 
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3.3. RESULTS AND DISCUSSION 

 

3.3.1. Chemical Transitions of the Polymeric Complexes and Polymeric Complex 

Nanoparticles 

FT-IR spectra of the complex nanoparticles and the precursor polymers are shown in Figure 

3.3. The FT-IR spectrum of hyaluronic acid (HA) exhibited the following significant 

characteristic bands: 3263~ = טcm-1 of O─H very light stretching overlapping N─H Stretching 

 1020cm-1 stretch of an = ט ,1605cm-1 stretching of C=O (carbonyls)~ = ט ,(3250cm-1~ = ט)

ether group (C─O─C) (Table 3.2, Figure 3.3a). FT-IR spectrum of poly (acrylic acid) (PAA) 

demonstrated the following characteristic bands of significance: 3113~ = טcm-1 O─H 

stretching, 2938~ = טcm-1 for ─CH─, stretching frequency of (alkanes) functionality and ט = 

~1696cm-1 C=O (carbonyl group) stretch (Table 3.2, Figure 3.3b). FT-IR spectrum of the 

newly formed hyaluronic acid modification (HA─PAA) showed characteristic bands of 

significance as follows: 3266~ = טcm-1 O─H stretch peak, overlapping N─H stretching (ט = 

~3250.00cm-1), 1547~ = טcm-1 C=O stretch and 1035~ = טcm-1 C─O─C stretch of ether 

groups that links both native polymers (Table 3.2, Figure3.3c). This data provided evidence 

for the formation of HA─PAA complex, whereby we observed the disappearance of a 

carbonyl functionality of precursor PAA at 1696~ = טcm-1 (Table 3.2, Figure 3.3b) in the 

HA─PAA (Table 3.2, Figure 3.3c) due its interaction with the –OH of HA (Table 3.2, Figure 

3.3a) to give the ether band formation (C─O─C). This resulted in the shift of band position 

from at 1696~ = טcm-1 (Table 3.2, Figure 3.3b) to 1547 ~ = טcm-1 due to the excess 

surrounding effects resulted from the HA modification (Figure 3.3c). The chemical 

representation for the reaction HA with PAA is showed in Figure 3.2 below. 

 

. 
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Figure 3.2: The chemical modification reaction of HA with PAA. 
 

The FT-IR spectrum of (2-hydroxypropyl)-𝛽-cyclodextrin (HP-𝛽-CD) exhibited the following 

characteristic bands of significance: 3343~ = טcm-1 O─H stretching, 2926~ = טcm-1 ─CH─, 

stretching (alkanes) and 1007~ = טcm-1 (C─O─C) stretch of ether groups (Table 3.2, Figure 

3.3d). The newly synthesized complex (HA─PAA─HP-𝛽-CD) exhibited the following bands of 

significance: 3330~ = טcm-1 O─H stretch, 2929~ = טcm-1 ─CH─ stretch (alkanes), ט = 

~1559cm-1 C=O stretch and 1023 = טcm-1 (C─O─C) stretch (Table 3.2, Figure 3.3e). The 

drug ACV showed characteristic bands of significance as follows: 3200~ = טcm-1 for N─H 

stretching, 1500~ = טcm-1 C=O (carbonyl group) and 1010~ = טcm-1 for C─O─C stretch of 

ether. 

 

 

 

 

Poly (acrylic acid) (PAA) 

HA-PAA 



37 
 

Table 3.2: FT-IR general function bands assignment for polymeric compounds  

Characteristic 
absorption (cm-1) 

Function groups Assignments  

3343–3210 
 
 
3250 

O─H Stretch 
 
 
 N─H symmetric stretch 

Alcohol, phenols and 
carboxylic acid (CO─OH) 
 
Secondary amide 
 

3000–2800 
 
 
 
 

C─H Stretch Alkanes 
Methylene asymmetrical 
Methyl symmetrical 
Methyl asymmetrical 
 
 

1707─1549 C=O Stretch Carbonyls 
Ketones 
Carboxylic acids 

1073─1007 C─O─C Stretch Ethers 

 

The chemical reaction for the formation of HA─PAA─HP-𝛽-CD complex is shown in Figure 

3.2.1. Therefore, the newly formed HA─PAA─HP-𝛽-CD complex was confirmed by the 

disappearance of the intense carbonyl (C=O) functional group of HA─PAA complex at ט = 

~1549cm-1 (Table 3.2, Figure 3.3c) which reacted with hydroxyl (─OH) functional groups of 

HP-𝛽-CD (Table 3.2, Figure 3.5d), which is seen by the decrease absorption intensity at ט = 

~3343cm-1 of the newly formed Semi-Synthetic Biopolymer Complex (HA─PAA─HP-𝛽-CD) 

(Table 3.2, Figure 3.3e) compared to HP-𝛽-CD (Table 3.2, Figure 3.3d).  
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 Figure 3.2.1: The chemical conjugation reaction of HA─PAA with HP-𝛽-CD 
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The ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles demonstrated similar absorption 

characteristics as the un-loaded polymeric complex, with little evidence of drug absorbed 

peaks (Figure 3.3 g). Hence, it was confirmed that the encapsulation of the drug within the 

core of the formed polymeric complex was evident; however additional tests were done in 

order to further confirm the presence of the drug under investigation within the nanoparticle 

polymeric complex. 

Figure 3.3: FT-IR spectra of (a) Hyaluronic acid (HA), (b) Poly (acrylic acid) (PAA), (c) 

Modification of Hyaluronic acid with Poly acrylic acid (HA─PAA), (d) (2-hydroxypropyl)-𝛽-

cyclodextrin (HP-𝛽-CD), (e) HA─PAA─HP-𝛽-CD, (f) ACV-loaded HA─PAA─HP-𝛽-CD and (g) 

ACV. 

3.3.2. 1H NMR Analysis of the Polymeric Complexes and Polymeric Complex 

Nanoparticle 

1H NMR analysis was used for further structural confirmation of the complex nanoparticles 

and the precursor polymers. The 1H NMR for HA exhibited the following peaks of 

significance: at ẟ = 4.70ppm is the peak for water d6, at ẟ = 4.50–3.00ppm are peaks that 

originated from anhydrous glucose unit (Figure 3.4a). The 1H NMR for PAA gave the 

following peaks of significance: 1H NMR peaks at ẟ = 4.70ppm for water-d6, peaks at ẟ = 

2.50–1.00ppm are associated with hydrogen from alkyl, methyl and ethyl functionality 

(─CH─,─CH2─) and hydrogen protons peaks at ẟ = 7.90–7.58ppm in PAA  spectrum are 

possible due to (acrylic acid) residual monomer impurities (Figure 3.4b). 

 

HA

NewPAA

FHA-g-FPAA

Hydroxylpropyl-B-CD

NewHA-g-PAA-CD

EncHA-g-PAA-HP-CD.New

ACV DRUG
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Sample 414 By PEService Date Saturday, January 24 2015
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Sample 048 By Administrator Date Tuesday, February 23 2016
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The 1H NMR spectrum for the newly formed HA modification (HA─PAA) contains the 

following peaks of significance: at ẟ = 4.70ppm is the peak for water-d6, peaks at ẟ = 4.50–

3.00ppm is from anhydrous glucose unit from the modified HA, peaks at ẟ = 2.50–1.00ppm is 

from hydrogen of the alkyl, methyl and ethyl functionality (─CH─,─CH2─) from the PAA use 

in modification. The solvent D2O exchange  with COOH groups of PAA to give COOD 

resulting in no proton signal observed for COOH in 1H NMR at ẟ = 7.90–7.58ppm (Figure 

3.4c). 

 

Figure 3.4: 1H NMR spectra of (a) hyaluronic acid (HA), (b) Poly (acrylic acid) (PAA) and (c) 
HAA─PAA in D2O. 
 

1H NMR analysis for the newly formed complex (HA─PAA─HP-𝛽-CD) confirmed the 

existence of the anhydrous glucose unit peaks at ẟ = 4.50–3.00ppm from native polymeric 

complexes (HA─PAA and HP-𝛽-CD) plus the alkyl (methyl, ethyl) functionality at ẟ = 2.00–

1.00ppm (Figure 3.5c). Of great significance is the confirmation of the existence of ACV drug 

(Figure 3.5d) within the polymeric complex (Figure 3.5e). Therefore, the 1H NMR spectrum 

of the ACV-loaded HA─PAA─HP-𝛽-CD confirmed that ACV integrity was maintained, since 

all the significant peaks of ACV (Figure 3.5d) from the ACV-loaded HA─PAA─HP-𝛽-CD 

nanoparticles (Figure 3.5e) can be clearly identified. The maintenance of drug integrity is 

very significant in order to ensure that the drug chemical intervention in relation to its clinical 
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functioning had not been interfered with, instead only the drug properties for the desired 

solubility has been modified. 

 Figure 3.5: 1H NMR spectra of (a) HAA─PAA, (b) HP-𝛽-CD, (c) HA─PAA─HP-𝛽-CD, (d) 

ACV and (e) ACV-loaded HA─PAA─HP-𝛽-CD in D2O. 
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3.3.3. X-ray Diffraction Pattern Analysis of the Polymeric Complexes and Polymeric 

Complex Nanoparticles 

Polymers can exist in various forms: crystalline, semi-crystalline, micro-crystalline or 

amorphous, with a single polymer possessing the potential to exhibit different forms. X-ray 

diffraction (XRD) patterns were used to study the characteristic forms of the native polymers 

used and the newly formed polymeric complexes with drug-loaded nano-complex. Figure 

3.6; depicts the XRD patterns of the native polymers (PAA and HA) used and the newly 

formed polymeric complexes (HA─PAA). The XRD pattern B of PAA reveals its being less 

amorphous in nature compared to HA. The absence of peaks in pattern C also confirmed 

that the newly formed HA─PAA graft is totally amorphous. 

 

Figure 3.7 depicts the XRD patterns of the precursor polymeric complexes (HA─PAA and 

HP-𝛽-CD), the newly formed polymeric complex (HA─PAA─HP-𝛽-CD), and the ACV-loaded 

polymeric complex .Pattern B of HP-𝛽-CD reveals its semi-crystalline form and pattern C of 

HA─PAA─HP-𝛽-CD highlights that the resultant polymeric complex is semi-crystalline. 

Hence, XRD pattern D of ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles and pattern C of 

non-loaded HA─PAA─HP-𝛽-CD polymeric complex were both observed to be similar in 

shape with minimum difference, as they are both semi-crystalline. The small difference in 

shape is due to the existence of ACV drug within the complex. The difference in the degree 

of crystallinity between the HA─PAA, HP-𝛽-CD and HA─PAA─HP-𝛽-CD polymeric complex 

suggests that there is a strong hydrogen bond interaction between the HA─PAA and HP-𝛽-

CD forming HA─PAA─HP-𝛽-CD. Figure 3.7.1 also confirmed that the drug was 

encapsulated within the complex, since the complex phase is dominant and the drug phase 

is less observed.  

 

Figure 3.6: The XRD spectra for (a) HA, (b) PAA, and (c) HA─PAA. 
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Figure 3.7: The XRD spectra for (a) HA─PAA, (b) HP-𝛽-CD, (c) HA─PAA─HP-𝛽-CD and (d) 

ACV-loaded HA─PAA─HP-𝛽-CD. 
 

 

Figure 3.7.1: The XRD spectra for (a) ACV-loaded HA─PAA─HP-𝛽-CD and (b) ACV 

 

3.3.4. Thermal and Thermodynamic Analysis of the Polymeric Complexes and 

Polymeric Complex Nanoparticles 

Differential scanning calorimetry (DSC) analysis was used to determine the thermal events of 

HA, PAA, HA─PAA, HP-𝛽-CD, HA─PAA─HP-𝛽-CD and ACV-loaded HA─PAA─HP-𝛽-CD 

polymers measured from 25oC to 300oC (Figure 3.8 and 3.9). Figure 3.8 reveals 

thermogram A of HA─PAA, showing an endothermic melting point at 115oC and a very broad 

crystallization point (exothermic peak) at 240oC before degradation. Thermogram B of HA 
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demonstrated an endothermic melting point at 110oC with a sharp crystallization point 

(exothermic peak) at 240oC. Thermogram C of PAA possessed two slightly broad 

endothermic peaks at 60oC and 240oC before degradation. It is also observed that 

thermogram A of HA─PAA polymeric complex is more exothermic (more heat is required to 

break its bonds) compared to the native polymers. This also confirm that the newly formed 

HA─PAA polymeric complex is more stable compared to the native polymers. 

  

Figure 3.9 also revealed thermal events of HP-𝛽-CD, HA─PAA, HA─PAA─HP-𝛽-CD and 

ACV-loaded HA─PAA─HP-𝛽-CD. Thermogram B of HA─PAA─HP-𝛽-CD revealed two 

thermal events which are at 110oC and 220oC, while thermogram C of HP-𝛽-CD reveals one 

endothermic thermal event at 110oC confirming that these molecules bonds are easily 

broken. 

 

The thermogram of ACV-loaded HA─PAA─HP-𝛽-CD formulation (thermogram D), reveals 

that it is also more endothermic (it can easily release the entrapped drug without requiring 

significant energy or heat) compared to thermogram B of HA─PAA─HP-𝛽-CD, due to the 

presence of entrapped drug. Figure 3.9 also revealed a very sharp endothermic meting point 

of ACV at 260oC. 

 

Figure 3.8: DSC thermograms of (a) HA─PAA, (b) HA and (c) PAA, measured from 25oC to 
300oC. 
 

A = HA─PAA 

B= HA 

C = PAA 
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Figure 3.9: DSC thermograms of (a) HA─PAA, (b) HA─PAA─HP-𝛽-CD; (c) HP-𝛽-CD and d) 

ACV-loaded HA─PAA─HP-𝛽-CD, measured from 25oC to 300oC. 
 

3.3.5. Thermogravimetric Analysis of the Polymeric Complexes and Polymeric 

Complex Nanoparticles 

The thermogravimetric (TGA) analysis which yielded thermograms of PAA, HA, HA─PAA, 

HA─PAA─HP-𝛽-CD and ACV-loaded HA─PAA─HP-𝛽-CD are depicted in Figure 3.10 and 

3.11. The thermograms were used to determine the thermal events of the above mentioned 

polymers, such as their thermal decomposition pattern and thermal stability, which assisted 

with the identification/confirmation of formation of new polymeric systems.  

 

Different polymers usually possess different thermal decomposition patterns and have 

varying thermal stabilities. The thermograms (in Figure 3.10 and 3.11) confirmed that a 

comparatively novel polymeric material has been synthesized, supported by varied thermal 

decomposition patterns. Thermogram A (in Figure 3.10) of native PAA, shows two 

degradation/decomposition events of significance at 220oC and 450oC and thermogram B (in 

Figure 3.10) of native HA, shows three degradation/decomposition events of significance at 

90oC, 220oC and 620oC. Thermogram C (in Figure 3.10) of the newly formed HA─PAA, 

shows three degradation/ decomposition events of significance at 90oC, 230oC and 400oC. 

The difference in decomposition pattern and weight percentage of the native polymer 

thermograms compared to the formed copolymer thermogram suggests the formation of a 

composite material. 

A = HA─PAA 

B = HA─PAA─HP-𝛽-CD 

C = HP-𝛽-CD 

D = ACV-loaded HA─PAA─HP-𝛽-CD 

E = ACV 



45 
 

 

Figure 3.11 shows thermogram A of native HP-𝛽-CD, possessing one 

degradation/decomposition of significance at 340oC. Thermogram C (Figure 3.11) of the 

newly formed HA─PAA─HP-𝛽-CD polymeric complex has four degradation 

events/decompositions of significance which are at 90oC, 230oC, 330oC and 400oC. The 

variety in thermal events for the HA─PAA─HP-𝛽-CD polymeric complex suggested the 

formation of a new complex copolymer. The comparative thermograms of the complex 

copolymer (HA─PAA─HP-𝛽-CD), thermogram C, and thermogram D for the ACV-loaded 

HA─PAA─HP-𝛽-CD are also shown in Figure 3.11. The thermograms decomposition events 

and weight percentage are slightly different; indicating the effect of the existence of ACV 

drug within the formed polymeric complex being minimal, due to the small percentage (20%) 

of the drug within the complex. 

 

Figure 3.10: The TGA thermogram of (a) Poly acrylic acid PAA, (b) Hyaluronic acid HA and 
(c) HA─PAA. 
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Figure 3.11: The TGA thermograms of (a) HP-𝛽-CD, (b) HA─PAA, (c) HA─PAA─HP-𝛽-CD 

and (d) ACV-loaded HA─PAA─HP-𝛽-CD. 
 

3.3.6. Morphology and Particle Size Distribution of the ACV-loaded HA─PAA─HP-𝛽-CD 

Nanoparticles  

The cross-sectional morphology of ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles was 

observed immediately after the nano spray-drying process. The nanoparticles were spherical 

in shape, as viewed via SEM (Figure 3.12 (a and b)). It was also observed that the 

nanoparticles were less than 500nm in size. Figure 3.13, shows the size distribution of ACV-

loaded HA─PAA─HP-𝛽-CD nanoparticles, which revealed the average nanoparticle diameter 

of 257.9.2nm, the zeta potential of -58.3mV and a particle distribution intensity (PdI) of 0.315. 

A PdI < 0.5 revealed that there was limited variation of size in the nanoparticle range and the 

zeta potential signified that the ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles were not 

easily agglomerating. TEM (in Figure 3.12 (c and d)) also confirmed the spherical shape of 

the nanoparticles. 
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.  

Figure 3.12: Images of the prepared nanporticles, SEM (a and b) and TEM (c and d) (The 
black spots representing the nanoparticles of interest and the surrounding areas representing 
the copper grid spaces). 
 

 

Figure 3.13: (a) Particle size distribution and (b) Average zeta potential distribution profile for 

ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles. 
 

(a)

(b) 
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3.3.7 Chromatographic Analysis for Acyclovir Quantification 

Figure 3.14 demonstrated chromatographic separation peaks for ACV and Indapamide (IP), 

represented as the internal drug standard. A calibration curve was prepared by running the 

samples after optimization of the verified method.  

 

Figure 3.14: Chromatogram showing the separation peaks for ACV and Indapamide. 
 

The area under the curve (AUC) ratio of ACV and IP was plotted against concentration (mg. 

mL-1). Figure 3.15 displays the calibration curve for ACV quantification in PBS (pH 6.8, 37oC). 

 

Figure 3.15: Calibration curve for ACV quantification in PBS (pH 6.8), n=3. 
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3.3.8. Solubility Analysis of Acyclovir from the Polymeric Complex Nanoparticles vs. a 

Comparator Product 

Solubility analysis demonstrated that the concentration of ACV in water was enhanced in the 

presence of HA─PAA─HP-𝛽-CD. After 24 hours (as per the method undertaken in section 

3.2.13), 59% of ACV from the comparator product was dissolved in water compared to 90% 

of ACV from polymeric nanoparticle complex. Therefore, the incorporation of ACV into the 

HA─PAA─HP-𝛽-CD complex improved its solubility. 

 

3.3.8.1. The mechanism of solubility 

The prepared SSBC contains two main components, which enable it to physically interact 

easier with poorly soluble drugs. The complex contains a hydrophobic component (mainly 

hydrocarbon heads, which repel water) and a hydrophilic component rendering it an 

amphiphilic complex. Hence, an entity with a given degree of hydrophobicity will attract 

similar hydrophobic structures. The poorly water soluble drug was attracted to the inner core 

of the complex since it contains long polymeric hydrocarbon chains from the modified PAA, 

the drug will be mainly within HP-𝛽-CD cycle while the hydrophilic component of the complex 

stabilizes the formed complexation in an aqueous environment (Figure 3.16 shows the 

interaction of the drug with the polymeric complex). The drug absorption peaks were not 

observed in the FT-IR spectra, confirming the existence of the drug within the HP-𝛽-CD 

complex, thereby hindering its absorption. The complex HA─PAA is amphiphilic, hence the 

conjugation of an additional amphiphilic HP-𝛽-CD further enhance the oral absorption 

properties of the drug loaded complex, while maintaining its integrity as proven from 1HNMR 

in section 3.3.2, Figure 3.5.  
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Figure 3.16: Schematic representation of the drug interaction with the polymeric complex. 
 

3.3.9. In Vitro Release/Diffusion Studies of ACV from the Polymeric Complex 

Nanoparticles vs. a Comparator Product 

In vitro drug release studies are critical in determining the rate and extent of drug absorption, 

which in turn affect the therapeutic efficacy of the drug. Absorption of the drug is influenced 

by its release from the dosage form, its solubility and subsequently permeability into the 

systemic circulation among other factors (Horter and Dressman, 2001). The influence of the 

solubility of the drug on the rate of release was observed with respect to the drug 

incorporated. As the aqueous solubility increases, the rate of drug release increases 

proportionally. However, the mechanism of release is greatly influenced by the properties of 

the polymer employed. Figure 3.17 shows the release of ACV from three formulations. ACV-

loaded HA─PAA-HP─𝛽-CD nanoparticles demonstrated rapid release of ACV, as the 

complex is freely soluble in water. At 5 hours, approximately 70% of ACV was released from 

HA─PAA─HP-𝛽-CD polymeric nanoparticles complex, while only 30% of ACV was released 

from the comparator product, as well as for pure ACV (without any excipient) in accordance 

to the method employed in section 3.2.14. This confirms the influence of the 
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physicochemical properties of HA─PAA─HP-𝛽-CD polymeric complex on the drug, resulting 

in an increased solubility during the release. 

 

 

 Figure 3.17: Comparative drug release\diffusion profiles for ACV (SD 28.70, SD 14.40 and 

SD 13.95), n=3. 

 

Literature has reported a number of different methods that can be used to compare 

dissolution profiles (Fernandes et al., 2006; Ferraz et al., 2007; Polli et al., 1997; Anderson et 

al., 1999). The fit factor method was utilized in this study, since it is the most widely accepted 

method defined by two approaches: f1 (the difference factor) and f2 (the similarity factor) 

given by Equation 3.8 and Equation 3.9: 

 

𝑓1 = ([∑ │𝑅𝑡 − 𝑇𝑡│
𝑛

𝑡=1
] ⧸ [∑ │𝑅𝑡│

𝑛

𝑡=1
]) X 100           (Equation 3.8) 

 

And  

𝑓2 = 50 × log ([1 +
1

𝑛
∑ (𝑅𝑡 − 𝑇𝑡)2𝑛

𝑡=1
]

−0.5
𝑋 100 )                (Equation 3.9) 
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Where factor f1 represents the average percentage difference over all time points in the 

amount of the newly developed ACV-loaded polymeric nanoparticle formulation dissolution, 

compared to the comparator product (ACV existing in the market). Rt represents the 

percentage of dissolved ACV from the comparator at time t and Tt is the percentage of 

dissolution of the newly developed ACV-loaded polymeric nanoparticle formulation. The 

number of time points is represented by n. Therefore, if f1 is zero, the two formulations are 

identical, but f1 increase proportionally with dissimilarity between the newly formulated ACV-

loaded polymeric nanoparticles formulations and the comparator product. However, f2 is 

between 0 and 100, whereby 100 signifies that the newly developed polymeric nanoparticle 

formulation and the comparator product are identical. The calculated fit factors in our 

investigation were found to be f1 = 104.02 and f2 = 31.83. Therefore, as confirmed from the 

calculations, the 2 profiles vary in their release profiles, due to the unique behaviour of the 

nanoparticle complex. 

 

3.3.10. Ex Vivo Acyclovir Permeation Studies 

The cumulative amount of ACV permeated from the HA─PAA─HP-𝛽-CD polymeric 

nanoparticles complex and the comparator product, across the intestinal tissue gradient, is 

represented in Figure 3.18. The HA─PAA-HP-𝛽-CD polymeric nanoparticles complex 

significantly enhanced the cumulative values of ACV compared to the ACV from the 

comparator product (p < 0.05, where p = 0.0004), due to the smaller size of the polymeric 

nanoparticles (<500nm), which enhances intestinal mucosal permeation and internalization 

of particles (Francis et al., 2004), further altering ACV physicochemical properties through 

polymeric encapsulation. Table 3.3 shows the overall flux values for each formulation. 

 
Table 3.3: The overall flux values and accumulation amount for each formulation after 8 
hours 

Formulations Flux (mg.cm-2.min-1) Total accumulation (mg.cm-2) 
after 8 hours 

Polymeric nanoparticles 3.0316 x 10-3  1.4552 
Comparator product 2.0023 x 10-3 1.1027 
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Figure 3.18: The cumulative values of ACV-loaded HA─PAA─HP-𝛽-CD and ACV from the 
comparator product (37oC) (SD 0.00942 and SD 0.01044), n=3. 
 

3.4. CONCLUDING REMARKS 

It was reported that ACV has poor bioavailability (15-20) after oral administration, due to its 

poor absorption across the intestinal epithelium. A SSBC (HA─PAA─HP-𝛽-CD polymeric 

complex) was synthesized and characterized in an effort to improve ACV permeation and 

solubility. In vitro release/diffusion studies of ACV-loaded HA─PAA─HP-𝛽-CD were 

conducted in order to determine the possibility that the HA─PAA─HP-𝛽-CD nanoparticles 

may have on the permeability and solubility of ACV in comparison with the conventional 

commercial dosage of ACV that is currently available on the market. The loading of ACV into 

the HA─PAA─HP-𝛽-CD polymeric complex caused a significant increase in its permeation 

across the intestinal epithelium (p < 0.05), compared to the comparator product of ACV. In 

vitro data confirmed a marked improvement in drug release characteristics, in comparison to 

the commercially available product. This could be significantly attributed to the smaller 

particle size of the complex, enabling it to easily permeate through the intestinal epithelium in 

the GIT and easily dissolve in aqueous medium. 
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CHAPTER FOUR 

EXPERIMENTAL DESIGN AND STATISTICAL OPTIMIZATION OF THE DRUG-LOADED 

SEMI-SYNTHETIC BIOPOLYMER COMPLEX 

 

4.1. INTRODUCTION 

Spray-drying methods have recently gained huge attention as continuous single-step drying 

process to convert liquids to solid powders. These methods are significant because particles 

are obtained with controlled shape and size. Nanomedicine had also added to the demand of 

spray-drying methods for conversion of liquids to solid powders in the invention of nano-size 

particles with narrow distribution and good yield (Heng et al., 2011; Lee et al., 2011). The 

potential of spray-dried nanoparticles has not yet been fully explored. This was observed 

from the results obtained from the Web of Science online database for a search on ―Nano‖ 

and ―Spray-drying‖.  

 

Most of existing spray drying systems have limitations, such as not able to produce nano-

scale particles due to limited collection efficiency for particles < 2µm (Schmid et al., 2009; 

Chan and Kwok, 2011; Heng et al., 2011) and the overall yield is limited to the laboratory 

scale since these systems need a minimum of 30mL liquid for it to begin a run (Arpagaus et 

al., 2010; Li et al., 2010; Schmid et al., 2009). To try and minimize or to overcome some of 

these limitations, a Nano Spray Dryer B-90 was employed. The Nano Spray Dryer B-90 is 

the fourth and most recent generation of BUCHI laboratory-scale spray dryer instrument 

(Buchi, Switzerland), following the Mini Spray Dryer B-290, B-191 and B-190 models 

(Arpagaus et al., 2010; Buchi, 2010).  

 

The operation principle of the Nano Spray Dryer B-90 is based on the actuator causing the 

vibration of a tiny steel membrane (spray mesh) in a tiny spray cap driven on a piezoelectric 

crystal. There are different membrane sizes that can be used. The average droplet size is 

controlled by different spray cap sizes (4.0µm, 5.5µm and 7.0µm). Hence, a sample is fed in 

a form of liquid or dispersion through a peristaltic pump at a specific flow rate. To eject and 

vibrate the vapour of droplets, the spray mesh is triggered by the actuator that moves in an 

ultrasonic frequency creating many precise droplet sizes. The drying chamber contains a 

drying gas which enters through the laminar flow at the top and sets the inlet temperature by 

heat. The fine droplets produced are progressively dried to powder (solid particles). These 

powders are deposited at the surface of the electrode, since the particles are electrostatically 

charged. During the filtering of the gas, the outlet is measured and the drying gas exits the 

spray dryer. Connected to the Nano Spray Dryer B-90 apparatus is the inert Loop B-295 
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functioning as a cooling unit. For the safe operation of solvents an inert gas (N2) was used to 

avoid any explosive gas mixture. The electrical field carbon dioxide gas is supplied for the 

separation of particles at 1.5 bar (Schafroth et al., 2012). 

 

These nano-size systems have the potential to enhance dissolution rates of drug with some 

hydrophobic characteristics and since particle size is reduced, it creates a larger surface 

area (Chan et al., 2011; Heng et al., 2011;Li et al., 2010; Schmid et al., 2009). Hence, there 

is a great need for producing nano-carriers for their potential use in improvement of 

bioavailability and the enabling of targeted drug delivery systems (Li et al., 2010; Lee et al., 

2011). The Nano Spray Dryer B-90 was utilized in the design and optimization of the ACV-

loaded nanoparticle formulation in this study. 

 
The trial and error approach had been used in designing drug carrier systems, but this 

method is time consuming because it involves variation of one variable at a time in the 

formulation. Hence, the success of this method mainly depends on factors such as, intuition, 

knowledge base and previous experience (Singh et al., 2005). Design of Experiments (DoE) 

permits the experimental data to fit statistical equations and explores these models during 

formulation optimization and predicts performance. Different experimental data can be 

connected through DoE, resulting in data from fewer experiments. This method is a useful 

scientific tool (Lewis et al., 1999, Singh et al., 2005, Furnaletto et al., 2006). 

 

For the design of the drug-loaded Semi-Synthetic Biopolymer Complex (SSBC) 

nanoparticles, two variables of interest were identified as concluded in Chapter 3. Hence, 

this Chapter seeks to develop drug-loaded SSBC nanoparticles by employing a suitable 

experimental design with optimal drug entrapment, size and solubility, resulting in an 

improved oral bioavailability.  

 

A Face-Centred Central Composite Design (FCCCD) was selected. The FCCCD contains an 

embedded 2n (where n = number of factors) factorial design with an additional group of star 

and central points. The star points help in the estimation of the interaction and curvature of 

the response surface. Hence, response surface plots are also obtained during experimental 

data optimization which is a graphic representation of the mathematic data obtained for the 

experimental design. These plots show the relationship between variables for single 

outcomes (Singh et al., 2005).  

 

The aim of this Chapter was to highlight the statistical optimization of the drug-loaded SSBC  

nanoparticles which was developed in Chapter 3. This was carried out by preparing the 
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drug-loaded polymeric solution and dry the solution using the Nano Spray Dryer B-90 with 

varied parameters according to the FCCCD generated. The preparation of nanoparticles was 

undertaken in accordance with the methods developed during the preliminary 

experimentation phase and was loaded with the model drug (ACV). In order to prepare an 

optimized drug-loaded system, the size, solubility, drug entrapment and permeation of the 

different formulations were investigated.  

 

4.2. MATERIALS AND METHODS 

 

4.2.1. Materials 

The materials employed in this study were as described in Chapter 3, Section 3.2.1 of this 

dissertation.  

 

4.2.2. The Face-Centred Central Composite Design for Formulation Optimization 

A two factor, three level (32) Face-Centred Central Composite Design (FCCCD) was used for 

the optimization of the prepared ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles. The effect 

of the independent variables [Nanospray solution concentration (mg/mL) and Encapsulation 

time (hours)] were explored using the two factor, three level (32) FCCCD. The two 

independent variables were selected because of their noticeable significance during the 

preliminary preparation of the ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles described in 

Chapter 3. As outline in Table 4.1, the maximum drug entrapment, solubility, flux values and 

minimum zeta size were the expected dependent responses. 

 

Table 4.1: Variables and responses of the preparation of SSBC optimization 

Independent Variables    Levels  

   Lower  Upper 
Nanospray solution concentration 
(mg/mL) 

  0.75  2.50 

Encapsulation time (hours)   2  8 
      
Responses    Objective  
      
Zeta size (nm)    Minimize  
Drug entrapment    Maximize  
Solubility (%)    Maximize  
Flux (mg.cm-2.min-1)    Maximize  

 
4.2.3. Preparation of Face-Centred Central Composite Design Template 

The polymeric complex for ACV-loading was prepared as outlined in Chapter 3, section 

3.2.2 and 3.2.3. The loading of ACV and the preparation of ACV-loaded HA─PAA─HP-𝛽-CD 

nanoparticles were generated according to the FCCCD template, producing 13 formulations. 
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The encapsulation times and the nanospray solution concentrations for the 13 formulations 

were prepared as outline in Table 4.2. The resulting formulations were characterized and the 

outcomes were evaluated using a MINITAB® design software, with the purpose of obtaining 

an optimized formulation. 

Table 4.2: Generated formulations for the optimization of ACV-loaded nanoparticles 

Formulation number Nanospray solution concentration 
(mg/mL) 

Encapsulation time 
(hours) 

 
F1 

 
2.50 

 
2 

F2 1.625 2 
F3 0.75 2 
F4 0.75 8 
F5 1.625 5 
F6 2.50 8 
F7 1.625 5 
F8 1.625 5 
F9 1.625 5 

F10 1.625 5 
F11 1.625 8 
F12 2.50 5 
F13 0.75 5 

 
 

4.2.4. Preparation of Powder Nanoparticles through Nano-Spray Drying  

The Nano Spray Dryer B-90 (Buchi, Switzerland) was used to produce ACV-loaded 

HA─PAA─HP-𝛽-CD powder nanoparticles (Figure 4.1) for all formulations. Briefly, a clear 

solution was attained, with ACV-loaded HA─PAA─HP-𝛽-CD formulation process and filtered 

before spray-drying process (0.45µm Millipore filter). For the purpose of this study, a 4.0µm 

spray cap membrane was used with 60Hz ultrasonic frequency for the actuator. 

Supplementary spray drying parameters were set in accordance to section 3.2.5, Table 3.1.  

 

Figure 4.1: Collection of powder ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles. 
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4.2.5. Determination of ACV-loaded HA─PAA─HP─𝛽-CD Nanoparticle Size Distribution  

The particle sizes of all prepared 13 formulations were determined immediately after the 

Nano spray-drying process. The Zetasize NanoZS (Malvern Instruments Ltd, Malvern, United 

Kingdom) instrument was used to quantify the average particle size from each formulation. 

Briefly, dried powder particles were re-dispersed in water and subjected to a sonication 

(ultra-sound) for 2 minutes (6mm probe, 20 kHz, 50 W), then their average size was 

determined.  

 

4.2.6. Morphological Determination of the ACV-loaded HA─PAA─HP-𝛽-CD 

Nanoparticles 

The morphology of the prepared nanoparticles was confirmed using scanning electron 

microscopy (SEM) (FEI company, Hillsboro, Oregon, USA). Prior to visualization, the 

prepared nanoparticles were sputter-coated with an isotope of gold, for high refractive 

imaging. 

 

4.2.7. Determination of Drug Entrapment for ACV-loaded HA─PAA─HP-𝛽-CD 

Nanoparticles 

For each ACV-loaded HA─PAA─HP-𝛽-CD nanoparticle formulation, 50mg was dissolved in 

50mL of NaOH (pH 10) solution for 24 hours. Thereafter, the ACV content in each dissolved 

formulation was determined using UPLC analysis, as verified and described in Chapter 3, 

section 3.2.15. 

 

4.2.8. Determination of the Solubility of ACV-loaded HA─PAA─HP-𝛽-CD Nanoparticles 

A Shake Flask Method was used to determine the solubility of the formulations. Each 

formulation (50mg) was placed into a stopped bottle containing 50mL of buffer solution of pH 

6.8. The solutions in the bottles were maintained in a shaking water bath for 24 hours at 37oC 

at 75 rev.min-1 (Waman et al., 2014). Thereafter the sample contents were filtered through a 

0.22µm membrane filter, after suitable dilution with the mobile phase. The amount of ACV in 

the formulations was quantified using UPLC analysis, as mentioned in Chapter 3, section 

3.2.15. 

 

4.2.9. Ex Vivo Drug Permeation Studies for ACV-loaded HA─PAA─HP-𝛽-CD 

Nanoparticles 

The tissue preparation and the ex vivo drug permeation were implemented as outlined in 

Chapter 3 section 3.2.16. At predetermined time intervals (15, 30, 60, 90, 120, 150, 180, 
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240, 300, 360, 420 and 480 minutes), samples were drawn from the acceptor compartment 

and replaced with a fresh equal amount of the PBS (pH 7.4). The drug content from each 

formulation was analysed using a UPLC analysis. The cumulative amount of the drug 

permeated and the average flux values (J) of each formulation was calculated as outlined in 

Chapter 3, section 3.2.16.1 (Equation 3.6 and Equation 3.7). 

 

4.2.10. In Vitro Cytotoxicity Testing of the ACV-loaded Polymeric Nanoparticles using 

Caco-2 Cell Lines 

The small intestinal lumen surface area is lined with an epithelial cell monolayer, isolating the 

systemic circulation from the intestinal lumen, which prevents the invasion of bacteria and 

toxic compounds from the GI tract. Intestinal epithelial cells can be disturbed or damaged by 

toxic compounds or toxicity generated during digestion. Disturbance or damage in the 

intestinal epithelial tissues can weaken its protective role. Thus, the possible cytotoxicity of 

ACV-loaded polymeric nanoparticles was investigated in an intestinal cell line using Caco-2 

intestinal cells (Cellonex, South Africa). 

 

4.2.10.1. Cell culturing using caco-2 cell lines 

Caco-2 cell lines (Cellonex, South Africa) were grown in culture flasks containing solution 

Dulbecco’s Modified Eagle Medium (DMEM), supplemented with 10% fetal bovine serum 

with 4.0mM L-Glutamine and sodium pyruvate, with added 50µL Amphotericin (Sigma-

Aldrich; St. Louise, MO, USA). Cells were maintained in an incubator (RS Biotech Galaxy, 

Irvine, UK) under humidified atmosphere of 5% CO2 at 37°C during cell growth. Cells were 

grown until they reached 60–90% confluence. The medium was discarded in the cultured 

flask, adding Trypsin-EDTA (3mL) and incubated for 3–4 minutes to detach the cells. Then 

fresh medium (3mL) was added in the culture flask after cell detachment and centrifuged at 

2000rpm for 2 minutes. The supernatant was discarded and cells were suspended in the 

fresh medium (10mL) and poured into two flasks. When necessary, cells were frozen in a 1:1 

mixture of cryoprotective medium (15%v/v DMSO) at –80oC. 

 

4.2.10.2. Cell counting utilizing trypan blue solution assay and a haemocytometer 

After detachment of cells and removal of the supernatant as described in section 4.2.10.1, 

cells were suspended in flesh media (3mL). Briefly, Trypan blue solution (30µL) was added 

to the suspended cells (10µL). The disposable haemocytometer chamber was filled with a 

mixture of trypan blue solution added to the suspended cells. Light microscopy (Olympus 

CKS microscope, Olympus, Japan) was used to examine the chamber for cell counting. 

Trypan blue solution stains only dead cells and excludes living cells. By counting unstained 
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cell (living cells) and stained cells (death cells), the number of cells in the sample was 

determined. 

 

4.2.10.3. In vitro cytotoxicity evaluation utilizing 3-4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium bromide assay 

Cytotoxicity of the ACV-loaded polymeric nanoparticles in Caco-2 cell lines was evaluated 

utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Briefly, 96 well 

plates were seeded with Caco-2 cells at a density of 2x104 cells/well. After culturing the cells 

in 96 well plates for 24 hours in the incubator (RS Biotech Galaxy, Irvine, UK) under 

humidified atmospheric conditions of 5% CO2 at 37oC, the culture was removed from the 

incubator in to a laminar flow unit. Thereafter, different concentrations of the prepared ACV-

loaded polymeric nanoparticles solutions (50, 100, 200, 400 and 1000µg/mL) of equal 

volumes were added to the initial culture media. The cells were again incubated for further 24 

hours at 37oC. The medium was removed at the end of the 24-hour incubation, and 100μL of 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide solution (diluted in a culture 

media with a final concentration of 0.5 mg/mL) was added to the wells, with a further 

incubation of 4 hours to allow the conversion of MTT to formazan by mitochondrial 

dehydrogenase. After a 4-hour incubation period, the culture was removed from the 

incubator and the formazan formed crystals which were dissolved by adding MTT solubilizing 

solution equal to the original culture medium volume. All absorbance measured at a 

wavelength of 570nm. The background absorbance of the multiwall plates was measured at 

690nm and was subtracted from the 570nm measurement. The resulting measurements 

were presented as relative cell viability (mean±standard deviation). Equation 4.1 was used to 

calculate the relative cell viability: 

 

                         
   (      )    (     )

  (       )    (     )
                        (Equation 4.1) 

 

4.3. RESULTS AND DISCUSSION 

 

4.3.1. Assessment of Particle Surface Morphology and Particle Size  

It was observed by undertaking SEM studies, that the ACV-loaded HA─PAA─HP-𝛽-CD 

nanoparticulate formulations were spherical in structure. Figure 4.2 shows an exemplary 

representation of the formulations. The average sizes of the varying formulations are outlined 

in Table 4.3. It was noted that, as the nanospray solution concentration was decreased, and 

by increasing the encapsulation time, particles appeared smaller and more spherically 

defined. The reasoning for this occurring is due to an increased encapsulation time, leading 
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to greater complexation of the polymer and drug, resulting in uniformly produced 

nanoparticles. 

 

  
Figure 4.2: The representative SEM image of the ACV-loaded HA─PAA─HP-𝛽-CD 
nanoparticles where (a) Image is taken at 25 000 x magnification and (b) Image is taken at 
199 992 x magnification. 
 

Table 4.3: The experimental responses of the ACV-loaded HA-PAA-HP-𝛽-CD nanoparticles 

 Formulation 
 

Nanospray solution 
concentration(mg/m

L) 
 

Encapsulation time 
(hours) 

 

Average 
Size (nm) 

Drug 
Entrapment 
in 50mg of 
formulation 

Solubility 
(%) 

Flux (values 
in 8 hrs.) 

 F1 2.50 2 280.0 9.67mg 
(19.34%) 90.49 206x10

-5
 

 F2 1.625 2 192.6 9.20mg 
(18.40%) 90.63 216 x10

-5
 

 F3 0.75 2 185.2 10.05mg 
(20.10%) 97.58 185 x10

-5
 

 F4 0.75 8 207.1 11.87mg 
(23.56%) 90.16 239 x10

-5
 

 F5 1.625 5 257.8 11.30mg 
(22.60%) 82.73 239 x10

-5
 

 F6 2.50 8 207.0 11.81mg 
(23.62%) 82.05 216 x10

-5
 

 F7 1.625 5 266.5 11.79mg 
(23.58%) 83.35 248 x10

-5
 

 F8 1.625 5 266.9 11.82mg 
(23.64%) 84.32 241 x10

-5
 

 F9 1.625 5 272.6 11.92mg 
(23.84%) 85.13 233 x10

-5
 

 F10 1.625 5 266.1 11.52mg 
(23.04%) 81.85 239 x10

-5
 

 F11 1.625 8 254.3 12.14mg 
(24.28%) 83.46 249 x10

-5
 

 F12 2.50 5 185.6 11.89mg 
(23.78%) 72.31 216 x10

-5
 

 F13 0.75 5 174.0 12.47mg 
(24.94%) 73.96 246 x10

-5
 

 

(a) (b) 
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Drug entrapment for each formulation is outlined in Table 4.3. It was observed that, 

percentage drug entrapment is dependent on the encapsulation time and nanospray solution 

concentration. Hence, the lowest concentration and moderate time duration resulted in the 

highest drug entrapment. This could be attributed to sufficient time given to the drug to 

interact with the complex in a concentrated solution medium.  

 

4.3.2. Ex Vivo Permeation Studies using ACV-loaded HA─PAA─HP-𝛽-CD Nanoparticles  

The ex vivo permeation rate of the fabricated ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles 

were evaluated prior to in vivo study. For all the formulations, the average flux values were 

calculated as outline in Table 4.3. The cumulative amount of ACV permeated against time 

from the ex vivo study for all 13 formulations were plotted as displayed in Figure 4.3. The 

ACV-loaded HA─PAA─HP-𝛽-CD nanoparticles formulation profiles are displayed in Figure 

4.3 a, b and c, representing formulations 1-5, 6-9 and 10-13, respectively. The overall 

highest permeation concentration out of 13 formulations was observed to be formulation 5, 

while formulation 3 was observed to have the least permeation concentration. Formulation 

5,7,8,9 and 10 exhibited nearly similar permeation rates after 8 hours, with formulation 5 

possessing slightly higher permeation after 24 hours. 

 

(a) 
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Figure 4.3: The cumulative amount of ACV permeated for (a) formulations 1-5, (b) 
formulations 6-9 and (c) formulations 10-13, n=3.  
 

(b) 

(c) 
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4.3.3. Analysis of the Face-Centred Central Composite Design for Nanoparticle 

Formulation Optimization 

Residual plots were used to differentiate between predicted and observed values of particles; 

with independent variables on the x-axis and residual plots on the y-axis. These plots were 

mainly employed to investigate regression models. A linear regression model is scientifically 

acceptable for data that has indiscriminate residuals plot points which are dispersed around 

the horizontal axis, in comparison to a non-linear model. Figure 4.4 displays the residual plot 

of particles size (nm). A near-straight line was observed in a normal probability plot of the 

residuals signifying a normal distribution analysis. Further, an indiscriminate dispersion of 

residuals around zero is observed in the residual versus the fitted value scattered plot as 

expected. A bell shape was obtained in the histogram of the residuals plot, indicating a 

uniformed distribution of predicted results. 
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Figure 4.4: Residual plots for formulations representing particle size (nm). 
 

The three-dimensional response surface plots are depicted in Figure 4.5; they represent the 

relationship between the dependent and independent variables of the formulations. As 

depicted in Figure 4.5a. it was observed that solubility increases with an increased 

encapsulation time and the nanospray concentration solution displayed quadratic effects on 

the solubility. Solubility increased with increase nanospray concentration solution (until 

~2mg/mL) thereafter slightly decreasing in nature. 
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n  

Figure 4.5: Response surface plots correlating (a) solubility with nanospray solution 

concentration and encapsulation time, (b) flux (x10-5) with nanospray solution concentration 

and encapsulation, (c) drug entrapment with nanospray solution concentration and 

encapsulation time. 

 

 As depicted in Figure 4.5 b, the flux gradually increases with the nanospray concentration 

solution, thereafter remaining constant in the region of 2mg/mL. The encapsulation time 

demonstrates a vertical parabolic effect on the response solubility. As depicted in Figure 4.5 

(a) 

(b) 

(c) 

Solubility (%) 

Encapsulation time (hrs) 

Nanospray solution concentration (mg/mL) 

Encapsulation time (hrs) 

Nanospray solution concentration (mg/mL) 

flux (e-5) at 8 hrs 

Encapsulation time (hrs) 

Nanospray solution concentration (mg/mL) 

Drug entrapment 

(%) 

Surface Plot of Drug Entrapment vs Encapsulation time, Nanospray solution 

Surface Plot of Flux (e-5) at 8 hrs vs Encapsulation time, Nanospray solution 

Surface Plot of Solubility (%) vs Encapsulation time, Nanospray solution 
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c, drug entrapment slightly increases with an increase in nanospray solution concentration, 

with a vertical parabolic effect also observed in response to solubility. 

 

4.4. RESPONSE OPTIMIZATION OF THE ACV-LOADED HA─PAA─HP-𝛽-CD 

NANOPARTICLES 

The statistical software (Minitab®, V14, Minitab Inc®, PA, USA) was used for each variable to 

determine its optimum parameters. The formulations were optimized, in accordance to the 

measured responses, being drug entrapment, solubility, as well as flux and size, as 

displayed in Figure 4.6.  

 

 

Figure 4.6: Optimization plots displaying factorial levels and desirability values for the 

chosen optimized ACV-loaded HA─PAA─HP-𝛽-CD Nanoparticle Formulations.  
 

4.4.1. Fabrication and Characterization of the Optimized Formulation 

Fabrication of the polymeric complex was described in Chapter 3 Section 3.2.2 and 3.2.3, 

with optimization undertaken as outlined in Figure 4.6. 

 

4.4.2. Morphology and Size Distribution Analysis of the Optimized Formulation 

The cross-sectional morphology of the optimized polymeric nanoparticulate formulation was 

observed immediately after the Nano Spray Drying process. It was found that the 

nanoparticles were spherical in shape as viewed using SEM analysis. The average size 
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distribution of the optimized polymeric nanoparticle formulation was found to be in the region 

of 209.50nm and a zeta potential of -51mV was observed, with a PdI of 0.330. A PdI value 

less than 0.50, revealed minimum particle size variation, with a particle charge preventing 

agglomeration. 

 

4.4.3. Assessment of Drug Entrapment and Solubility for the Optimized Formulation 

Drug entrapment for the optimized ACV-loaded polymeric nanoparticle formulation was 

predicted to be 11.23mg (22.46%), while the experimental value was 10.00mg in 50.00mg of 

the formulation (equivalent to 20.00%). During solubility experiments, it was found that the 

solubility or the concentration of ACV in the buffer was 83% after 24 hours (as per the 

method in section 3.2.13). The flux value was calculated to be 205.03x10-5.  

 

Table 4.4 displays the predicted values of the optimized ACV-loaded polymeric nanoparticle 

formulation, in comparison to the experimental values of the four responses. 

 

Table 4.4: Measured responses of the experimental verses the predicted values 

Measured response Predicted values Experimental 
values 

Desirability (%) 

Drug Entrapment  11.23mg (22.46%) 10mg (20.00%) 89.05 
Solubility  85.7642% 83% 96.78 

Flux (x10-5 ) 231.1584 205.03 88.70 
Size (nm) 210.8126 209.50 99.38 

 

4.4.4. In Vitro Assessment of the Optimized Formulation 

As mentioned in Chapter 3, In vitro drug release studies essential for determining the rate 

and extent of drug absorption, which in turn affects the therapeutic efficacy of the drug. 

Absorption of the drug is influenced by its release from the dosage form, its solubility and 

subsequently permeability into the systemic circulation among other factors (Horter and 

Dressman, 2001). The rate of ACV release from the novel HA─PAA─HP-𝛽-CD polymeric 

complex was studied. The mechanism of drug release is mostly influenced by the properties 

of the polymer employed. Figure 4.7, illustrated the release of ACV from the ACV-loaded 

HA─PAA─HP-𝛽-CD nanoparticulate formulation. Results revealed that, at 7 hours, 

approximately 75% of ACV was released from HA─PAA─HP-𝛽-CD polymeric nanoparticle 

complex in accordance to the method employed in Section 3.2.14. This confirms the 

influence of the physicochemical properties of HA─PAA─HP-𝛽-CD polymeric complex on the 

drug, resulting in an increased solubility with enhanced drug release. 
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Figure 4.7: Percentage release of ACV for the optimized nanoparticle formulation (SD 3.23), 

n=3. 

 

4.4.5. Ex Vivo drug Release of ACV from the Optimized Formulation 

The cumulative amount of ACV permeated from the optimized drug-loaded HA─PAA─HP-𝛽-

CD nanoparticle complex across the pig intestinal tissue, is reflected in Figure 4.8. As 

concluded in Chapter 3, this polymeric complex demonstrated significant results for 

increased drug permeability, due to uniform reduced particle size.  
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Figure 4.8: Cumulative drug permeation graph of ACV from the optimized polymeric 
nanoparticulate formulation (SD 0.059), n=3. 
 

4.4.6. Cytotoxicity Analysis of ACV-loaded Polymeric Nanoparticles 

The cytotoxicity of ACV-loaded polymeric nanoparticulate formulation was investigated using 

Caco-2 cells. Cells were incubated in ACV-loaded polymeric nanoparticle medium (50 to 

1000ug/mL) for 24 hours, using a MTT assay to investigate the cytotoxicity effects. Figure 

4.9 demonstrates that there were no significant differences in relative viability of the ACV-

loaded polymeric nanoparticles compared to the control. The synthesized novel ACV-loaded 

polymeric nanoparticle formulation thus demonstrated no noticeable toxic effects on the 

intestinal epithelium tissue.   
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Figure 4.9: Cytotoxicity cell culture test. 
 

4.5. CONCLUDING REMARKS 

The novel ACV-loaded polymeric nanoparticle formulation was optimized and synthesized in 

accordance to the FCCCD. The effects observed from the independent variables on the 

measured responses were examined, determining the predicted responses and experimental 

input for the optimized ACV-loaded polymeric nanoparticle formulation. The experimental 

design proved to be scientifically suitable and the prepared optimized formulation was tested 

and characterized in accordance to previously verified techniques. The optimized formulation 

confirmed the improved intestinal solubility and permeation of the drug under investigation, 

demonstrating no significant toxicity on Caco-2 cell lines. Due to these positive results, the 

optimized ACV-loaded polymeric nanoparticles under investigation was successfully 

evaluated in vitro and ex vivo, thus progressing to the final stage of this research where the 

optimized polymeric nanoparticles are evaluated in vivo, using a Large White Pig model, 

which discussed in detail in Chapter 5.  
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CHAPTER FIVE 

IN VIVO ASSESSMENT OF THE DRUG-LOADED SEMI-SYNTHETIC BIOPOLYMER 

COMPLEX IN THE LARGE WHITE PIG MODEL 

 

5.1. INTRODUCTION 

In vitro drug release studies are conducted in an attempt to partially simulate in vivo 

conditions; however, drug carriers are not exposed to the complete functionality of an in vivo 

environment. In vivo drug release studies are of great significance, providing 

pharamacokinetic data which is most reliable and quantifiable (Lachman, 1992; Quimby, 

2002; Festing and Wilkinson, 2007; Stokes and Marsman, 2014). 

 

The in vivo release studies utilizing animals are of great importance in order to study the 

pathogenic and potential therapeutic strategies of the human disease (Gerlach, 1996). 

Hence, it of great significance and benefit to select an appropriate animal model for a 

particular study that will closely mimic the conditions and effects in humans. 

 

For the purpose of this study, Large White Pig model was selected to evaluate the release 

rate of the prepared novel optimized ACV-loaded polymeric nanoparticle drug delivery 

system in comparison to the current existing ACV conventional dosage form that is available 

in the market. The Large White Pig animal model was selected since they have similar 

buccal tissue and gastrointestinal anatomy and physiology as humans. In addition, pigs have 

minimal cost of maintenance and they are a good model for studies that require frequent 

blood collection sampling (Oberle et al., 1994; Anderson et al., 2002; Dorkoosh et al., 2002; 

Brunet et al., 2006). The digestive characteristics of pigs also allows acceptable parallel 

comparison to humans, hence, pigs are the best model for in vivo studies employing oral 

drug therapeutic technologies (Patel, 2005; Cooppan, 2010; Kolawole et al., 2010; Ndesendo 

et al., 2011; Shaikh, 2012; Moodley, 2013; Bawa et al., 2013).  

 

This Chapter critically evaluates the pharmacokinetic behaviour of the optimized ACV-

loaded polymeric nanoparticles, in comparison to the current commercially available ACV 

dosage formulation. The polymeric nanoparticulate formulation was administered in a 

capsule, which was further enteric coated to avoid acid degradation in the stomach. 
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5.2. MATERIALS AND METHODS 

 

5.2.1. Materials 

UPLC grade solvents were used for UPLC-MS/MS analysis, employing analytical grade 

reagents of 99.99% purity. Methanol was purchased from Microsep (Johannesburg, South 

Africa). Heparin sodium 1000 i.u/mL (BodenPTY, Intramed, Port Elizabeth, South Africa), 

Acrodisc@ 13mm 0.22µm filters and french gauge double lumen 35cm catheters (SA-17752) 

was obtained from Life science (Johannesburg, South Africa). ACQUITY UPLC C18 columns 

(1.7µm, 2.1x100mm) was purchased from Water Corporation (Milford, MA, USA). White 

Large Pigs were obtained from the Central Animal Services (CAS) from the University of the 

Witwatersrand. All other reagents were of standard analytical grade, and was used as 

procured. 

 

5.2.2. Ethics Clearance for the Use of Animals in this Study 

In vivo assessment of innovative polymeric oral drug delivery systems in Large White Pigs 

was approved by the Animal Ethics Screening Committee (AESC), from the University of the 

Witwatersrand with Ethics Clearance Number 2014/38/C (Appendix C) 

 

5.2.3. Experimental Procedures Undertaken During In Vivo Evaluation 

Prior to oral dosing of the ACV-loaded polymeric nanoparticles formulation and commercial 

product, pigs were weighed on a day-to-day basis. In order to keep record of any weight 

changes that had occurred, the animals were weighed during the study for possible interferes 

with the standard procedures of the study. For any pig that was found to have lost body 

weight > 10%, the CAS at the University of the Witwatersrand was obliged to remove the 

animal from the study. All animals were regularly observed for any behavioural changes and 

any signs of pain or reluctance to move around.  

 

This study compared the prepared novel optimized ACV-loaded polymeric nanoparticle 

formulation with the ACV conventional dosage currently on the market in terms of their 

kinetic release. During this experimentation, a placebo (drug free) formulation was also 

administered orally as a reference system (control) in order to observe any behavioural 

variations in the drug dosed and non-drug dosed animals. A total of 18 Large White Pigs 

were divided into groups of 3, each containing 6 Large White Pigs as described below: 

 

Group 1 (Test): Contained 6 Large White Pigs, in which 5 were orally administered with the 

optimized novel ACV-loaded polymeric nanoparticle formulation (containing ACV = 200mg), 
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using an intragastric tube, with 1 pig not administered any formulation. This group was used 

to obtain pharmacokinetic data for comparison purposes. 

 

Group 2 (Conventional dosage form): Contained 6 Large White Pigs, in which 5 were 

orally administered with ACV conventional dosage formulation (containing ACV = 200mg) 

through an intragastric tube, with one pig not been administered anything. This group was 

also utilized to obtain pharmacokinetic results, which would allow comparison between the 

optimized novel ACV-loaded polymeric formulation and the conventional ACV dosage that is 

currently available on the market. 

 

Group 3 (Control): Contained 6 Large White Pigs, in which 5 were orally administered with 

a drug-free formulation through an intragastric tube with 1 pig not being administered with 

any formulation. 

 

Figure 5.1 is a schematic representation of the animal experimentation design using a Large 

White Pig model. Pigs were anaesthetized by injecting Anklet® (Ketamine 11mg/kg) and 

Dormice® 0.3mg/kg, which was maintained under Isoform® and medical oxygen gas for 30 

minutes. Under the influence of anaesthesia, the novel optimized ACV-loaded polymeric 

nanoparticle formulation and the ACV convention dosage were administered via intragastric 

dosing, with a three day wash out period in between. Blood samples were drawn from the 

catheterized jugular vein into heparinized tubes at pre-determined time intervals. All blood 

samples were centrifuged at 5000rpm for 10 minutes. The separated plasma was removed 

and stored at –80oC until further analysis (Patel, 2005; Cooppan, 2010; Kolawole et al., 2010; 

Ndesendo et al., 2011; Shaikh, 2012; Bawa et al., 2013; Moodley, 2013). 
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Figure 5.1: Schematic of the experimental design employed for in vivo drug release studies 

Administration: 

Via intragastric tube while under anaesthesia 

Analysis:  

Plasma drug concentrations of stored samples were analyzed using Ultra Performance 

Liquid Chromatography (UPLC). 

 

Blood Sampling:  

5mL blood samples withdrawn from the catheterized jugular vein at predetermined 

time intervals of 0,1 ,2 ,3 ,4 ,6 ,8 , 10, 12 ,16 ,20 and 24 hours, after oral 

administration. Samples were then placed in heparinized tubes at -80
o
C until further 

analysis. 

 

Wash-out Period: 

Pigs that were returned to stock were returned to the study after a wash-out period 

corresponding to the elimination half-life of the drug used. 

 

Return To Stock: 

Pigs were returned to stock once analysis is complete.  

Anaesthesia: 

Anaket injection 11mg/kg + Dormicum (midazolam) 0.3mg/kg, topical procaine 

HCL (0.5%) maintained for approximately one hour 

 

6 Pigs 6 Pigs 6 Pigs 

Total number of pigs =18 

Group 1 (Test): 

Polymeric 

nanoparticles 

Group 2 (Convention dosage): 

Conventional drug delivery 

system  

Group 3 (Control): 

Drug-free delivery 

system 
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5.2.4. Surgical Attachment of a Catheter into the Jugular Vein for Blood Sampling  

 

5.2.4.1. Surgical preparation of Large White Pigs 

All Large White Pigs were anaesthetized using Midazolam 0.3mg/kg, topical procaine and 

ketamine HCL 11mg/kg. The anaesthesia in pigs was maintained by medical oxygen (100%) 

and isoflurane gas (2%) for approximately 30-60 minutes (Likenhoker et al., 2010) to allow 

enough time for the surgical implantation of the catheter into the left jugular vein (Kolawole et 

al., 2010). 

 

5.2.4.2. Surgical implantation of the catheter into the jugular vein 

The surgical implantation of catheters into the pigs left jugular vein was undertaken after 10 

days of habituation. The surgical insertion of the 7 gauge double lumen 40cm catheter (CS- 

28702, Arrow Deutchland GmbH, and Erding, Germany) into left jugular vein was carried. 

The jugular vein was exposed by an incision made to the left lateral part of the neck. The 

jugular vein was isolated by blunt segmentation and a two-lumen 10cm central venous 

catheter was inserted into the lumen of the vein. A technique called purse suture was used to 

fasten the inserted catheter into the wall of the vein. 25cm length of the catheter remaining 

after insertion was tunnelled subcutaneously to an exit point towards the cranial position, at 

the dorsal aspect of the scapula, which was stitched to avoid detachment. The external 

injection ports of the catheter were sutured to the skin to prevent excess bending. Blood 

samples were taken with heparinised saline (5000IU heparin in 1L of 0.9% saline). 

Buprenorphine 0.05mg/kg and Carpofen 4mg/kg intramuscularly were administered to 

manage the pain and inflammation. After surgery, all pigs were observed critically to ensure 

full recovery from anaesthesia. Prior to oral dosing, all pigs were allowed complete recovery 

for a period of 10 days. 

 

5.2.5. Capsule Enteric-Coating Method 

 

5.2.5.1. Preparation of the coating dispersion 

For preparation of a Eudragit® L 100 dispersion, 2.3g of a polysorbate 80 solution (33%v/v), 

4.6g of triethyl citrate (plasticiser) and 1.9g of glyceryl monostreorate were added to 100mL 

deionized water solution. The mixture was stirred for 10 minutes in a high speed mixture until 

a fine, homogenous dispersion was obtained. Finally, the dispersion was gently added to 80g 

of Eudragit® dispersion in deionized water (30%w/v) to form an enteric coating solution. 
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5.2.5.2. Methodology for enteric coating of the capsule 

The method of capsule enteric coating was adapted from the ProCoater method (Gill and 

Prausnitz, 2007). Briefly, an empty Gelatine Capsule size 00 was filled with the prepared 

sterilized novel optimized ACV-loaded polymeric nanoparticle formulation and sealed. The 

prepared enteric coating solution was gently poured in the Coating Tray, to avoiding bubble 

formation. The filled capsules were loaded into a capsule coating holder, thereafter the entire 

capsule body plus a portion of the capsule cap were dipped into the prepared enteric coating 

solution. A dipping and withdrawal operation of 10 times was performed within a total of 25 to 

30 minutes.  

 

5.2.6. Optimized Nanoparticle Formulation Administration to the Large White Pigs 

Pigs were fasted overnight and the following day prior to dosing. All pigs were sequentially 

anaesthetized by injecting Ketamine HCL (40mg/Kg) through the implanted catheter. The 

anaesthesia was maintained using topical procaine and oxygen. Once the pig was stable on 

anaesthesia, an intragastric tube was inserted all the way into the stomach while the pig was 

lifted in an upright manner and the tube size was limited to the weight of the pig. The enteric 

coated capsule containing the novel optimized ACV-loaded polymeric nanoparticle 

formulation was administered through the intragastric tube and a small amount of water 

(~30mL) was utilized to flush down the capsule. After administration, the pig was taken back 

to its pen, and was observed until full recovery and consciousness was obtained. 

 

5.2.7. Convention Dosage Formulation Administration to the Large White Pigs 

The administration of the ACV conventional dosage that is current available in the market 

was as described in section 5.2.6. 

 

5.2.8. Collection of Blood samples, Measurements and Drug Extraction  

 

5.2.8.1. Blood sample treatment and handling after collection 

There was no need for any form of anaesthesia or restraint during blood sampling from the 

catheters. Hence, blood was sampled in order to determine the concentration of ACV that 

reached the systemic circulation of the pig at a certain time interval. Sterilized syringes were 

used for the collection of blood samples from the inserted catheter into the jugular vein. The 

collected blood was placed in EDTA tubes (BD Vacutainers, Franklin Lakes, NJ, USA) to 

avoid contamination. After administration of the formulation, blood was collected at 0, 1, 2, 3, 

4, 6, 8, 10, 12, 16, 20 and 24-hour time points, as seen in Figure 5.2. The sampled blood 
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was centrifuged at 5000rpm for 15 minutes to obtain plasma and stored it in a –80oC. The 

obtained plasma was analysed using UPLC techniques.  

 

Figure 5.2: Blood sampling procedures undertaken after dosing of the nanopolymeric and 
commercial ACV formulations.  
 

5.2.8.2. Drug extraction method from the plasma samples 

Protein has to be removed from the blood prior to injecting the sample into the UPLC for 

analysis. There are two commonly used extraction methods to remove protein from the 

blood, which are: Liquid-liquid extraction and solid phase extraction. For this study, Liquid-

liquid extraction method was established to be the best method to remove proteins, whereby 

propan-2-ol and dichloromethane were used as deproteinizing agents of choice for this 

procedure. 

 

5.2.8.2.1. Mechanism of removal of ACV from plasma 

After obtaining the optimized ratio of protein removal according to Section 5.2.8.2, the frozen 

plasma sample was thawed and poured in a tube. The ratio of propan-2-ol: dichloromethane 

(1200µL:400µL) was pipetted into the centrifuge tube and 400µL of blood plasma was added 

into the tube, in accordance with the ratio obtained in Section 5.2.8.2.. To ensure proper 

mixing with the blood, samples were vortexed (Vortex-Genie 2, Scientific Industries Inc., 

Bohemia , NY , USA) for 15 minutes. In order to remove the precipitated protein, samples 

were centrifuged at 1500rpm for 10 minutes (Model TG16-WS, Shanghai Luxiangyi 

Centrifuge Instrument Co., Ltd., Shanghai, China). Eppendorf microtubes (Eppendorf AG, 

Hamburg, Germany) were used to hold the supernatant, which were then placed in a vacuum 
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oven (60oC). Samples were then filtered using a 0.2μm filter (GHP Acrodisc filter, Pall Life 

Sciences, NY, USA). Indapamide (IP) was used as an internal standard and 100μL of a 

0.1mg/mL solution was added to each sample before analysis. 

 

5.3. THE UTILIZATION OF UPLC FOR DRUG ANALYSIS 

The concentration of the ACV drug under investigation from pig blood plasma was 

determined using UPLC analysis technique. In this study, Waters, UPLC system (Waters, 

Milford, MA, USA) with a PDA detector was utilized. However, separation occurs in the 

UPLC® BEH Shield RP18 column having a pore size of 1.7µm. A method for separating ACV 

from pig plasma was developed, involving the appropriate selection of the flow rate, injection 

volume, wavelength and mobile phases. 

 

5.3.1. Preparation of the Mobile Phase and Washing Solutions  

Double deionised water (Milli-Q Gradient, Millipore, MA, USA, electrical conductivity 

18.2MΩ.cm at 25˚C) was used for all solution preparation. Prior to use, all solutions were 

filtered under vacuum using Durapore® membrane filters (0.22µm) to avoid column blockage 

that may lead to instrument failure. The appropriate mobile phase was found to be methanol: 

water: orthophosphoric acid in a ratio of 75:29:1. The washing solution consisted of 90% v/v 

acetonitrile (Strong wash) and 10% v/v acetonitrile (weak wash). 

 

5.3.2. Construction of the Calibration Curve for the Analysis of ACV Release from the 

Nanoparticle Formulation 

A standard stock solution of 0.1mg/mL ACV was prepared, by first dissolving ACV (10mg) in 

15mL of 0.1N sodium hydroxide, with the solution made to 100mL with the mobile phase. A 

sequence of working solutions were prepared by spiking blank plasma with working standard 

solutions to obtain concentrations of 0.025, 0.020, 0.015, 0.010 and 0.005mg/mL. The 

calibration curve was constructed from the peak ratio of drug/internal standard versus the 

prepared working solution concentrations. 

  

5.4. VALIDATION OF ULTRA PERFORMANCE LIQUID CHROMATOGRAPH (UPLC) 

ASSAY IN DETERMINATION OF ACV CONCENTRATION IN PIG PLASMA 

 

5.4.1. Selectivity Analysis of the UPLC Technique 

The selectivity of the instrumental assay was done by comparing the chromatograms of 

plasma obtained from the six pigs and the prepared mobile phase on UPLC to those spiked 

with ACV and the internal standard. Therefore, it would be easier to identify and eliminate 

interfering peaks. 
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5.4.2. Drug Recovery Test Utilizing the UPLC Technique 

A drug recovery test was performed by comparing the area ratio (analyte/IS) peak obtained 

from the blank plasma that was spiked with different concentrations of analytes and with 

constant concentration of the internal standard before and after drug extraction procedures 

(Iriarte et al., 2009; Samanidou et al., 2009). 

 

5.4.3. Calibration Curve Linearity Analysis  

The linearity was validated from the plotted calibration curve obtained from the calculated 

ratio of analyte/IS peak area versus analyte. Working concentrations were prepared by 

spiking the blank plasma with the working solutions prior to extraction (Samanidou et al., 

2009; Iriarte et al., 2009). Therefore the plot was drawn to validate the linearity of the 

chromatographic assay and all measurements were performed in triplicate. 

 

5.4.4. The Degree of Detection and Quantification  

The degree of detection and quantification were determined in accordance to the following 2 

Equations (Samanidou et al., 2009).  

 

Limit of quantification = 10σ/S                        (Equation 5.1) 
Limit of detection = 3.3σ/S                                    (Equation 5.2) 
Where: 

σ = standard deviation (SD) 

S = Calibration curve. 

 

5.4.5. Chromatographic Assays Accuracy and Precision 

The precision and accuracy of the chromatographic assay was determined by preparing 3 

different analyte concentrations (low, middle and high concentration). Hence, precision was 

taken as the percentage relative standard deviation (RSD) observed in the three different 

prepared analyte concentrations and accuracy was taken as a measure of deviation from the 

true value (RE). In three different days, the prepared analyte concentrations were tested 

(Samanidou et al., 2009, Iriarte et al., 2009). 

 

5.5. RESULTS AND DISCUSSION 

 

5.5.1. Assessment of Bleeding and Flushing Prior to Formulation Administration 

The Large White Pigs showed no sign of distress, prior to surgical procedures. Following 

surgical procedures, the animals showed no sign of unusual behaviour as the anaesthesia 
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wore off. Due to the successful habituation, blood sampling procedures in the Large White 

Pig was quicker, less time consuming and easier. Therefore, the additional 7 days of flushing 

and bleeding prior to formulation administration was successful. 

 

5.5.2. The Large White Pig Behaviour after Formulation Administration 

The oral administration of formulations to the Large White Pigs showed no sign of hostility. 

Hence, no signs of distress or pain were observed after oral administration of the 

formulations. Normal behaviour in terms of appetite and activities were displayed by all pigs 

after oral administration of the formulations. All pigs involved during experimentation survived 

the entire duration of the study and were additionally observed for 7 days after the study was 

completed.  

 

5.5.3. Assessment of Liquid-liquid Extraction Method and UPLC Chromatographic 

Separation of ACV in Plasma 

The liquid-liquid extraction method was the favoured method of drug extraction. The sample 

to be separated using UPLC analysis was prepared by spiking blank plasma with ACV and 

IP. In order for drug to combine into the mixture, the sample was vortexed. The extraction 

method was undertaken as described in section 5.2.8.2. The extracted solution was injected 

into the UPLC for analysis and was perceived that the separation method was adequate 

since the drug peak was separated adequately. Figure 5.3 Is a UPLC chromatographic 

representation of ACV drug after plasma extraction. 

 

 

Figure 5.3: Chromatogram displaying the spiked plasma separation of ACV drug after 
extraction. 
 

5.5.3.1. UPLC analysis validation of plasma: recovery, limit of detection and linearity 

Drug recovery was found to be 89% and 90% for ACV and IP, respectively, from the selected 

extraction method. Drug recovery was calculated in percentage by comparing the drug peak 
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area generated using the mobile phase as the dissolving medium with that of the plasma 

method with the same concentration. As previously mentioned, the limit of detection is 

calculated as the concentration of the analyte that produced a signal, equating to three times 

the standard deviation of the signal from the blank. In addition, the error limit of detection is 

described as three times the standard deviation obtained from the blank or three times the 

height of the baseline of the blank. The calculated limit of detection was found to be 

50ng/mL.  

 

5.5.3.2. Determination of calibration curve for the analysis of ACV drug in pig plasma 

The chromatographic separation method for ACV and IP proved to be ideal as observed in 

Figure 5.4, displaying two separate chromatogram peaks. IP was selected as an internal 

standard since this drug peak does not interfere or overlap with the ACV peak. Hence, the 

spiked internal standard (IP) and analyte (ACV) in plasma eluted within 8 minutes with a 

retention time (Rt) of 6.20 minutes for the internal standard and 4.60 minutes for the analyte 

(ACV). The internal standard (IP) and analyte (ACV) peaks that were obtained from UPLC 

analysis were distinct as displayed in Figure 5.4. 

 

 
Figure 5.4: Chromatogram depicting the separation of ACV and IP after plasma extraction. 
 

A concentration range between 0-2500ng/mL for the drug was selected for the calibration 

curve. Figure 5.5, represents the calibration curve obtained from pig plasma spiked with 

ACV and IP. 
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Figure 5.5: ACV calibration curve in plasma, n=3. 
 

5.5.4. Assessment of In Vivo ACV Drug Release from the Optimized Nanoparticle 

Formulation and the Comparator Product 

ACV is a pH sensitive drug, hence capsules were enteric coated to avoid acidic conditions of 

the stomach (pH 1.2) and only release the active ingredient in the small intestine (pH 5.5-

6.8). As previously mentioned, ACV is poorly soluble in pH of 6.8 (2.25mg/mL) compared to 

acidic conditions (pH 1.2) (18.3mg/mL) (Chaudhary and Verma, 2014). Therefore, the novel 

optimized ACV-loaded polymeric nanoparticle formulation was enteric coated to avoid the 

stomachs acidic conditions and to only dissociate in small intestine. 

  

The in vivo drug release studies were conducted in order to compare the drug release from 

the ACV conventional dosage (the comparator product) and the optimized ACV-loaded 

polymeric nanoparticle formulation.  

 

5.5.4.1. Pharmacokinetics analysis of acyclovir in a Large White Pig Model 

Figure 5.6 represents a graph, illustrating the comparative differences in the drug profiles of 

ACV from the comparator product (conventional dosage) and ACV-loaded polymeric 

nanoparticle formulation respectively, in pig blood plasma. For the ACV conventional dosage 

(comparator product), an initial significant rise of ACV concentration, with a plasma 

http://www.hindawi.com/56802540/
http://www.hindawi.com/51062760/
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concentration of ~256ng/mL was noted after ~2.5 hours from the analysed samples of pig 

plasma. It can be confirmed that the conventional dosage highest drug release was at 3 

hours (Tmax), with a peak plasma concentration of ~400ng/mL (Cmax).  

 

A rapid reduction in plasma concentration of ACV from the conventional dosage was 

observed from 6 hours until 24 hours. For optimized ACV-loaded polymeric nanoparticles, an 

initial significant rapid increase in ACV concentration with a Cmax = ~850ng/mL was noted at 

Tmax =  8 hours, followed by nearly constant ACV release up to 16 hours. The sustained 

release observed from the optimized ACV-loaded polymeric nanoparticle concentration curve 

from 8 to 16 hours may be due to the drug been carried into the deeper layers of the mucosa 

after passing through the epithelium, followed by slow drug release from the polymeric 

nanoparticles. For both drug release profiles, plasma levels subsequently decreased up to 24 

hours. The low therapeutic levels of ACV drug noted in the conventional dosage formulation 

compared to the optimized ACV-loaded polymeric nanoparticle formulation may be due to 

the poor in vivo absorption, and distribution characteristics of the drug.  

 

Studies demonstrate that after oral administration, ACV has an average oral bioavailability of 

~10-20%, and approximately 80% of oral dose is excreted through faeces (Bangaru et al., 

2000), thereby confirming the low Cmax concentration (~400ng/mL) of ACV from the 

comparator product. ACV has an average half-life of 3 hours in an adult with normal renal 

function (Wagstaff, 1994). A huge improvement in systemic levels of ACV was observed from 

the optimized ACV-loaded nanoparticle formulation illustrated in Figure 5.6 by the highest 

increased Cmax= ~850ng/mL, compared to the conventional ACV dosage Cmax= ~400ng/mL.  

 

ACV is a guanine analogue used to treat herpes zoster (Kharla and Singhal, 2015). Herpes 

zoster is a disease that results from reactivation of latent varicella-zoster virus (VZV) and is 

mainly found in old aged group people (Harpaz et al., 2008). The 50% inhibitory 

concentration (IC50) of ACV in an in vitro study for different clinical VZV, isolates the range 

from ~280ng/mL to ~1410µg/mL. Therefore, the optimised optimized ACV-loaded polymeric 

nanoparticles have a Cmax that is safe within the IC50 range.  

The optimized ACV-loaded polymeric nanoparticle formulation has thus proved substantial 

efficacy in comparison to the commercially available ACV dosage formulation, with 

significantly improved solubility and permeation, thereby reducing the frequency of 

administration of ACV.  
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Figure 5.6: Comparative plasma drug concentration profiles of the optimized ACV-loaded 
nanoparticle formulation, in comparison to the conventional ACV dosage over a 24 hour 
duration, n=3. 
 

The area under the plasma curve (AUC) was calculated for both formulations, to determine 

the comparative systemic exposure of ACV. In this study, a linear trapezoidal method was 

used to calculate the area under the concentration-time curve (AUC) (Rowland and Tozer, 

1995) given by Equation 5.3: 

 

AUCLinear  = 
1

2
(𝐶1 + 𝐶2)(𝑡2 − 𝑡1)  

   = 
1

2
(𝐶1 + 𝐶2)∆𝑡                           (Equation 5.3) 

 

Where C1 = Concentration1, C2 = Concentration 2 and ∆𝑡 = Time difference 

 

The calculated area under the plasma profile curve (AUC) of the optimized ACV-loaded 

polymeric nanoparticles was found to be 10301ng.h/mL, and the calculated area under the 

plasma profile curve for the comparator product was calculated as ~2468ng.h/mL. The 

bioavailability (F) of the optimized ACV-loaded polymeric nanoparticles, relative to the 

comparator product is given by Equation 5.4: 
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Bioavailability (F) = 
  

   
 = 

    

    
               (Equation 5.4) 

 

Assuming volume 1 = volume 2 and dose1= dose 2; where: 

F1 = bioavailability of optimized ACV-loaded polymeric nanoparticles 

F2 = bioavailability of the comparator product formulation and  

AUC1 = area under the plasma profile curve (AUC) of the optimized ACV-loaded 

polymeric nanoparticles 

AUC2 = area under the plasma profile curve (AUC) for the comparator product 

 

The relative bioavailability of the optimized ACV-loaded polymeric nanoparticles relative to 

the comparator product formulation was enhanced by a factor of ~4.17. The improved 

systemic exposure of ACV, leading to the increased relative bioavailability of the optimized 

ACV-loaded polymeric nanoparticle formulation compared to the comparator product 

formulation was the consequence of the reduced average particle size of the optimized ACV-

loaded nanoparticles (Kharia and Singhai, 2015). Another reason of the substantial 

improvement, may be as a result of increased solubility of ACV that was encapsulated in the 

formulated complex, resulting in an increased amount of ACV available for cell 

membrane/systemic absorption. The absorption enhancer complexed within the formulation, 

further assisted ACV uptake, thereby increasing the overall bioavailability of the polymeric 

formulation. 

 

5.6. CONCLUDING REMARKS 

The purpose of this in vivo drug release study was to evaluate ACV release proficiency from 

the optimized ACV-loaded polymeric nanoparticle formulation compared to the ACV 

conventional dosage. The ACV-loaded polymeric nanoparticles, demonstrated superior 

results in comparison to the commercially available ACV formulation on the market. After 

drug collection, UPLC proved to be the best technique for the analysis of ACV from pig 

plasma. The optimized ACV-loaded polymeric nanoparticle formulation depicted an improved 

release profile of ACV, with an increased AUC calculated from the polymeric nanoparticles, 

in relation to the conventional ACV product.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1. CONCLUSIONS 

A novel Semi-Synthetic Biopolymer Complex (SSBC) for the improvement of oral solubility 

and intestinal permeation of ACV was designed, developed and characterized. During 

preliminary studies, hyaluronic acid (HA), poly acrylic acid (PAA) and an oral permeation 

enhancer HP-𝛽-CD were identified as suitable components for the formation of a novel 

SSBC (HA─PAA─HP-𝛽-CD). ACV was used as a model drug, formulating nanoparticles, 

through modification and coupling techniques. Nanoparticles from ACV-loaded 

HA─PAA─HP-𝛽-CD polymeric complex were prepared using emulsion technique, thereafter 

subjected to spray-drying, to obtain uniformly produced nanoparticles. A Face-Centred 

Central Composite Design (FCCCD) was chosen for experimental evaluation, in order to 

obtain an optimized formulation with variables attained in pre-formulation studies. The 

optimized formulation was mathematically determined and the effects of the independent 

variables were assessed from dependent response variables. 

The optimized novel SSBC was evaluated in vivo using a Large White Pig model. The 

polymeric nanoparticle formulation displayed significant results, which substantially 

surpassed the comparator ACV formulation on the market, thereby demonstrating major 

enhancement in solubility and permeability of ACV. 

 

6.2. RECOMMENDATIONS 

The developed novel SSBC is not entirely limited to the enhancement of solubility and 

permeability of ACV. This polymeric complex can be applicable to any hydrophobic and 

poorly permeable drugs in order to improve their oral bioavailability. Therefore, further 

research on this polymeric system can be undertaken on a variety of hydrophobic drugs, in 

order to validate this complex as a universal drug-solubility and permeation enhancer for 

hydrophobic and poorly permeable drugs. There is also a requirement to investigate other 

types of cyclodextrin properties and use these polymers as nano-based formulations.  

 

The in vivo study provided significant results concerning the pharmacokinetic analysis of the 

polymeric complex under investigation. These results could have been enhanced if a proper 

diet was provided to this animal model, which in this instance may have possibly accelerated 

enzymatic alterations of ACV in the polymeric and commercially available formulations. Pilot 

human bio-studies are recommended and depending on the study results, Wits enterprise 

will market the product to pharmaceutical companies leading to commercializing the product. 



87 
 

REFERENCES 

 

1. Abbad, S., Zhang, Z., Waddad, A., Ayman, Y., Munyendo, W.L.L., Lv, H., Zhou, J., 

2015. Chitosan-Modified Cationic Amino Acid Nanopartcles as a Novel Oral Delivery 

System for insulin. J. Biomed. Nanotechnol. 11, 486-499.  

2. Adikwu, M.U., 2009. Biopolymers in Drug Delivery: Recent Advances and Challenges. 

Bentham Science Publishers.  

3. Ahmad, A., Pandey, R., Sharma, S., Khuller, G.K., 2006. Pharmacokinetic and 

pharmacodynamic behavior of antitubercular drugs encapsulated in alginate 

nanoparticles at two doses. Int. J. Antimicrob. Agents. 5, 420–427. 

4. Alarcon, C.D.H., Pennadam, S., Alexander, C., 2005. Stimuli responsive polymers for 

biomedical applications. Chem. Soc. Rev. 34, 276–285. 

5. Alenso, M.J., Losa, C., Calvo, P., Vila-Jato, J.L., 1991. Approaches to improve the 

association of amikacin sulphate to poly-(cyanoacrylate) nanoparticles. Int. J. Pharm. 

68, 69-76. 

6. Allemann, E., Leroux, J., Gurny, R., 1998. Polymeric nano- and microparticles for the 

oral delivery of peptides and peptidomimetics. Adv. Drug. Deliv. Rev. 34, 171–189. 

7. Arnal, J., Gonzalez-alvarez, I., Bermejo, M., Amidon, G.L., Junginger, H.E., Kopp, S., 

Midha, K.K., Shah, V.P., Stavchansky, S., Dressman, J.B., Barends, D.M., 2008. 

Biowaiver Monographs for Immediate Release Solid Oral Dosage Form: Aciclovir. J. 

Pharm. Sci. 97, 5061-5073. 

8. Amidi, M., Mastrobatista, E., Jiskoot, W., Hennink, W.E., 2010. Chitosan-based 

delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 662, 59-

82. 

9. Anderson, D.L., Bartholomeusz, F.D., Kirkwood, I.D., Chatterton, B.E., Summersides 

G., Penglis, S., Kuchel, T., Sansom, L., 2002. Liquid Gastric Emptying in the Pig: Effect 

of Concentration of Inhaled Isoflurane. J. Nucl. Med. 43, 968-971. 

10. Anderson, N.H., Bauer, M., Boussac, N., KhanMalek, R., Munden, P., Sardaro, S., 

1999. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro 

dissolution profiles. J. Pharma. Biomed. Anal. 17, 811–822. 

11. Arai, K., Kinumaki, T., Fujita, T., 1968. Toxicity of chitosan. Bull. Tokai Reg. Fish. Lab. 

43, 89–94. 

12. Arnal, J., Gonzalez-alvarez, I., Bermejo, M., Amidon, G.L., Junginger, H.E., Kopp, S., 

Midha, K.K., Shah, V.P., Stavchansky, S., Dressman, J.B., Barends, D.M., 2008. 

Biowaiver Monographs for Immediate Release Solid Oral Dosage Form: Aciclovir. J. 

Pharm. Sci.. 97, 5061-5073. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


88 
 

13. Arpagaus, C., Meuri, M., 2010. Laboratory scale spray drying of inhalable particles: a 

review. Respiratory Drug Delivery, VCU. 469-473. 

14. Athawale, V.D., Rathi, S.C., 1999. Graft polymerization: starch as a model substrate. J. 

Macromol. Sci-Rev. Macromol. Chem. Phys. 39, 445-480. 

15. Bala, I., Hariharan, S., Kumar, R.M., 2004. PLGA Nanoparticles in Drug Delivery: The 

State of the Art. Critical Reviews™ in Terapeutic Drug Carrier Systems. 21, 387–422. 

16.  Bangaru, R.A., Bansal, Y.K., Rao, A.R., Gandhi, T.P., 2000. Rapid, simple and 

sensitive high-performance liquid chromatographic method for detection and 

determination of acyclovir in human plasma and its use in bioavailability studies. J. 

Chromatogr. B Biomed. Sci. Appl. 739, 231-237. 

17. Bangaru, R.A., Bansal, Y.K., Rao, A.R.M., Gandhi, T.P., 2000. Rapid, simple and 

sensitive high-performance liquid chromatographic method for detection and 

determination of acyclovir in human plasma and its use in bioavailability studies. J. 

Chromatogr. B Analyt. Technol. Biomed. Life Sci. 739, 231–237. 

18. Banna, G.L., Collovà, E., Gebbia, V., Lipari, H., Giuffrida, P., Cavallaro, S., Condorelli 

R., Buscarino, C., Tralongo, P., Ferraù, F., 2010. Anticancer oral therapy: Emerging 

related issues. Cancer Treat. Rev. 36, 595–605. 

19. Battaed, H.A.J., Tregear, G.W., 1967. Graft copolymers. Interscience. New York,NY. 

20. Bawa, P., Pillay, V., Choonara, Y.E., du Toit, L.C., 2009. Stimuli-responsive polymers 

and their applications in drug delivery. Biomed. Mater. 4, 1-15. 

21. Bawa, P., Choonara, Y.E., du Toit, L.C., Kumar, P., Ndesendo, V.M.K., Meyer, L.C.R., 

Pillay, V., 2013. A novel stimuli-synchronized alloy-treated matrix for space-defined 

gastrointestinal delivery of mesalamine in the Large White pig model. J. Control. 

Release. 66, 234–245. 

22. Behnken design: An alternative for the optimization of analytical methods. Analytica 

Chimica. Acta. 597, 179-186 

23. Boonen, J., Baert, B., Roche, N., Burvenich, C., De Spiegeleer, B., 2010. Transdermal 

behaviour of the N-alkylamide spilanthol (affinin) from Spilanthes acmella (Compositae) 

extracts. J. Ethnopharmacol. 127, 77–84. 

24. Borges, O., Cordeiro-da-Silva, A., Romeijn, S.G., 2006. Uptake studies in rat Peyer’s 

patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for 

mucosal vaccination. J. Control. Release. 114, 348–358. 

25. Bowman, k., Leong, K.W., 2006. Chitosan nanoparticles for oral drug and gene 

delivery. Int. J. Nanomedicine. 1, 117-128. 

26. Braga, A.S., Catirs, A.B.C.E.B., Vaz, L.G., Spadaro, A.C.C., 2005. Quantitative 

analysis of potentially toxic metals in alginates for dental use. Rev. Ciênc. Farm. 

Básica. Apl. 26, 125–130. 



89 
 

27. Brunet, B., Doucet, C., Venisse, N., 2006. Validation of Large White Pig as an animal 

model for the study of cannabinoids metabolism: Application to the study of THC 

distribution in tissues. Forensic Sci. Int. 161, 169–174. 

28. BÜCHI Labortechnik AG. Nano Spray Dryer B-90 Brochure, 11592236 en 1012. 2010. 

Flawil, Switzerland, available on www.buchi.com.  

29. Burlant, W.J., Hoffmann, A.S., 1960. Block and graft copolymers. Rheinhold Pub Corp, 

New York, NY.  

30. Bussière, P., Peyroux, J., Chadeyron, G., Therias, S., 2013. Influence of functional 

nanoparticles on the photostability of polymer materials: Recent progress and further 

applications. Polym. Degrad. Stab. 98, 2411-2418. 

31. Cakmak, G., Togan, L., Uguz, C., Severcan, F., 2003. FT-IR spectroscopic analysis of 

rainbow trout liver exposed to nonylphenol. Appl. Spectrosc. 57, 835-841. 

32. Camilleri, M., Colemont, L.J., Phillips, S.F., Brown, M.L., Thomforde, G.M., Chapman 

N., Zinsmeister, A.R., 1989. Human gastric emptying and colonic filling of solids 

characterized by a new method. Am. J. Physiol. 257-284. 

33. Cascone, M.G., Sim, B., Sandra, D., 1995. Blends of synthetic and natural polymers as 

drug delivery systems for growth hormone. Biomaterials. 16, 569-574. 

34. Cascone, M.G., 1997. Dynamic–mechanical properties of bioartificial polymeric 

materials. Polym. Int. 43, 55–69. 

35. Chan, H.K., Kwok, P.C.L., 2011. Production methods for nanodrug particles using the 

bottom-up approach. Adv. Drug Deliv. Rev. 63, 406-416. 

36. Chan, J.M., Valencia, P.M., Zhang, L., Langer, R., Farokhzad, O.C., 2010. Polymeric 

Nanoparticles for Drug Delivery. Methods Mol. Biol. 624, 163-75. 

37. Charles, F.,Camilleri, M., Phillips, S.F., Thomforde, G.M., Forstrom, L.A., 1995. 

Scintigraphy of the whole gut: clinical evaluation of transit disorders. Mayo Clin. Proc. 

70, 113. 

38. Chaudhary, B., Verma, S., 2014. Preparation and Evaluation of Novel In Situ Gels 

Containing Acyclovir for the Treatment of Oral Herpes Simplex Virus Infections. 

ScientificWorldJournal. 2014, 1-7. 

39. Chaudhury, A., Das, S., 2011. Recent Advancement of Chitosan-Based Nanoparticles 

for Oral Controlled Delivery of Insulin and Other Therapeutic Agents. AAPS 

PharmSciTech. 12, 10-20. 

40. Cheow, S.W., Hadinoto, K., 2011. Factors affecting drug encapsulation and stability of 

lipid–polymer hybridnanoparticles. Colloids and Surfaces B: Biointerfaces. 85, 214–

220. 

http://www.buchi.com/
http://www.ncbi.nlm.nih.gov/pubmed/?term=Charles%20F%5BAuthor%5D&cauthor=true&cauthor_uid=7845035
http://www.ncbi.nlm.nih.gov/pubmed/?term=Camilleri%20M%5BAuthor%5D&cauthor=true&cauthor_uid=7845035
http://www.ncbi.nlm.nih.gov/pubmed/?term=Phillips%20SF%5BAuthor%5D&cauthor=true&cauthor_uid=7845035
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thomforde%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=7845035
http://www.ncbi.nlm.nih.gov/pubmed/?term=Forstrom%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=7845035
http://www.hindawi.com/56802540/
http://www.hindawi.com/51062760/


90 
 

41. Chiang, W., Hu, C., 1996. The improvement in flame retardance and mechanical 

properties of polypropylene/FR blends by acylic acid graft copolymerization. Eur. 

Polym. J. 32, 385-39. 

42. Cho, C.G., Lee, K., 2002. Preparation of starch graft copolymer by emulsion 

polymerization. Carbohydr. Polymw. 48, 125-130. 

43. Chouhan, P., Saini, T.R., 2014. Hydroxypropyl-𝛽-cyclodextrin: A Novel Transungual 

Permeation Enhancer for Development of Topical Drug Delivery System for 

Onychomycosis. J. Drug. Deliv. 1-7. 

44. Christian, W., Schwendeman, S.P., 2008. Principles of encapsulating hydrophobic 

drugs in PLA/PLGA microparticles. Int. J. Pharm. 2, 298-327 

45. Cooppan, S., 2010. A once daily multi-unit system for the site-specific delivery of 

multiple drug regimens, M Pharm Dissertation, Department of Pharmacy and 

Pharmacology, University of the Witwatersrand. 

46. Corti, G., Maestrelli, F., Cirri, M., Furlanetto, S., Mura, P., 2006. Development and 

evaluation of an in vitro method for prediction of human drug absorption I. Assessment 

of artificial membrane composition. Eur. J. Pharm. Sci. 27, 346–53. 

47. Costa, N.L., 2009. Short-term stress: the case of transport and slaughter. J. Anim. Sci. 

8, 241-252. 

48. Cunliffe, D., Pennadam, S., Alexander, C., 2004. Synthetic and biological polymers-

merging the interface. Eur. Polym. J. 40, 5–25. 

49. Davies, D.J., Ward, R.J., Heylings, J.R., 2004. Multi-species assessment of electrical 

resistance as a skin integrity marker for in vitro percutaneous absorption studies. 

Toxicol. In Vitro. 18, 351–358 

50. Degen, L.P., Phillips, S.F., 1996. Variability of gastrointestinal transit in healthy women 

and men. Gut. 39, 299-305. 

51. Desai, M.P., Labhasetwar, V., Amidon, G.L., Levy, R.J., 1996. Gastrointestinal uptake 

of biodegradable microparticles: effect of particle size. Pharm. Res. 13, 1838–1845. 

52. Deming, T.J., 1997. Facile synthesis of block copolypeptides of defined architecture. 

Nature. 390, 386–389. 

53. Deng, L., Wang, G., Ren, J., Zhang, B., Yan, J., Li, W., Khashab, N.M., 2012. 

Enzymatically triggered multifunctional delivery system based on hyaluronic acid 

micelles. RSC Advances. 2, 12909–12914. 

54. Dhakar, R.C., Maurya, S.D., Aggarawal, S., Kumar, G., Tilak, V.K., 2010. Design and 

evaluation of SRM microspheres of metformin hydrochloride. IJCP. 1:1-5. 

55. Dorkoosh, F.A., Verhoef, J.C., Borchard, G., Rafiee-Tehrani, M., Verheijden, J.H.M., 

Junginger, H.E., 2002. Intestinal absorption of human insulin in pigs using delivery 

systems based on superporous hydrogel polymers. Int. J. Pharm. 247, 47-55. 

http://www.ncbi.nlm.nih.gov/pubmed/15046783


91 
 

56. Ferguson, E.L., Alshame, A.M., Thomas, D.W., 2010. Evaluation of hyaluronic acid-

protein conjugates for polymer masked-unmasked protein therapy. Int. J. Pharm. 402, 

95-102. 

57. Ferraz, H.G., Carpentieri, L.N., Watanabe, S.P., 2007. Dissolution Profile Evaluation of 

Solid Pharmaceutical Forms Containing Chloramphenicol Marketed in Brazil. Braz. 

arch. biol. technol. 50, 57–65. 

58. Fernandes, C., Junqueira, R.G., Campos, L., Pianetti, G.A., 2006. Dissolution test for 

lamivudine tablets: Optimization and statistical analysis. J. Pharm. Biomed. Anal. 42, 

601–606. 

59. Fernandez, M., Sepulveda., Aranguiz, T., von Plessing, C., 2003. Technique validation 

by liquid chromatographyfor the determination of acyclovir in plasma. J. Chromatogr. B 

Analyt. Technol. Biomed. Life Sci. 791, 357–363. 

60. Fernandez-Urruuno, R., Calvo, P., Reminan-Lopez, C., Vila-Jato, J.L., Alonso, M.J., 

1999. Enhancement of nasal obsorption of insulin using chitosan nanoparticles. Pharm. 

Res. 16, 1576-81. 

61. Festing, S., Wilkinson, R., 2007. The ethics of animal research. Talking Point on the 

use of animals in scientific research. EMBO Reports. 8, 526-530. 

62.  Francis, M.F., Cristea, M., Winnik, F.M., 2004. Polymeric micelles for oral drug 

delivery: Why and how. Pure Appl. Chem. 76, 1321-1335. 

63. Furnaletto, S., Cirri, M., Maestrelli, F., Corti, G., Mura, P., 2006. Study of formulation 

variables influencing the drug release rate from matrix tablets by experimental design. 

Eur. J. Pharm. Biopharm. 62, 77-84. 

64. George, M., Abraham, T.E., 2006. Polyionic hydrocolloids for the intestinal delivery of 

protein drugs: alginate and chitosan—a review. J. Control. Release. 114, 1–14. 

65. Gerlach, M., Riederer, P., 1996. Animal models of Parkinson's disease: an empirical 

comparison with the phenomenology of the disease in man. J. Neural. Transm. 103, 

987-1041. 

66. Gill, H.S., Prausnitz, M.R., 2007. Coating formulations for microneedles. Pharm. Res. 

24, 1369–1380. 

67. Giusti, P., Lazzeri, L., Lelli, L., 1993. Bioartificial polymeric materials: a new method to 

design biomaterials by using both biological and synthetic polymers. TRIP. 1, 261–267.  

68. Grandin, T., 1997. Assessment of stress during handling and transport. J. Anim. Sci. 

75, 249-257. 

69. Grandin, T., 2007. Livestock handling and transport, CABI Publishing, Oxford. 

70. Guihen, E., 2013. Nanoparticles in modern separation science. Trends Analyt. Chem. 

46, 1-14. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


92 
 

71. Gumustas, M., Kurbanoglu, S., Uslu, B., Ozkan, S.A., 2013. UPLC versus HPLC on 

Drug Analysis: Advantageous, Applications and Their Validation Parameters. 

Chromatographia. 76, 1365–1427 

72. Han, H.S., Lee, J., Kim, H.R., Chae, S.Y., Kim, M., Saravanakumar, G., Yoon, H.Y., 

You, D.Y., Ko, H., Kim, K., Kwon, I.C., Park, J.C., Park, J.H., 2013. Robust PEGylated 

hyaluronic acid nanoparticles as the carrier of doxorubicin: Mineralization and its effect 

on tumor targetability in vivo. J. Control. Release. 168, 105–114. 

73. Hans, M.L., Lowman, A.M., 2002. Biodegradable nanoparticles for drug delivery and 

targeting. Curr. Opin. Solid State Mater Sci. 6, 319–327. 

74. Harpaz,, R., Ortega-Sanchez, I.R., Seward, J.F., 2008. Advisory Committee on 

Immunization Practices Centers for Disease Control and Prevention. Prevention of 

herpes zoster: recommendations of the Advisory Committee on Immunization Practices 

(ACIP). MMWR. Recomm. Rep. 57, 1-30. 

75. Hawker, C.J., Bosman, A.W., Harth, E., 2001. New polymer synthesis by nitroxide 

mediated living radical polymerizations. Chem. Rev. 101, 3661–3688. 

76. He, Y.Z.B., Inoue, Y., 2004. Hydrogen bonds in polymer blends. Prog. Polym. Sci. 29, 

1021-1051. 

77. Helliwell, M., 1993. The use of bioadhesives in targeted delivery within the 

gastrointestinal tract. Adv. Drug Deliv. Rev. 11, 221-251. 

78. Heng, D., Lee, S.H., Ng, W.K., Tan, R.B.H., 2011. The Nano Spray Dryer B-90. Expert. 

Opin. Drug. Deliv. 8, 965-972. 

79. Hoffmann, B., Volkmer, E., Kokott, A., Augat, P., Ohnmacht, M., Sedlmayr, N., 

Schieker, M., Claes, L., Mutschler, W., Ziegler, G., 2009. Characterisation of new 

bioadhesive system based on polysaccharides with the potential to be used as bone 

gue. J. Mater Sci: Mater Med. 20, 2001–2009. 

80. Holkar, G., Daphal, V., Yadav, R., Rokade, M.D., 2012. Method Validation and 

Quantitative Determination of Antiviral Drug Acyclovir in Human Plasma by a 

LCMS/MS. Int. J. 4, 11-17  

81. Horter, D., Dressman, J.B., 2001. Influence of physicochemical properties on 

dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 46, 75-87. 

82. Hsu, S.T., Pan, T.C.,  2007. Adsorption of paraquat using methacrylic acid-modificaion 

rice husk. Bioresour Technol. 98, 3617-3621. 

83. Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., Yang, C., 2002. Synthesis and 

characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials. 23, 3193–

3201. 

84. Husseini, G.A., Pitt, G.W., 2008. Micelles and nanoparticles for ultrasonic drug and 

gene delivery. Adv. Drug Deliv. Rev. 60, 1137–1152. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


93 
 

85. Illum, L., Farrai, N.F., Davis, S.S., 1994. Chitosan as a novel nasal delivery system for 

peptide drugs. Pharm. Res. 11, 1186-1189. 

86. Iwanaga., Y., Wen, J., Thollander, M.S., Kost, L.J., Thomforde, G.M., Allen, R.G., 

Phillips, S.F., 1998. Scintigraphic measurement of regional gastrointestinal transit in 

the dog. Am. J. Physiol. 275, 904-910. 

87. Iriarte, G., Gonzalez, O., Ferreirόs, N., Maguregui, M.I., Alonso, R.M., Jiménez, R.M., 

2009. Validation of a fast liquid chromatography-UV method for the analysis of drugs 

used in combined cardiovascular therapy. J. Chromatogr. B Analyt. Technol. Biomed. 

Life Sci. 877, 3045-3053. 

88. Jani, P., Halbert, G.W., Langridge, J., Florence, A.T., 1990. Nanoparticle uptake by the 

rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. 

Pharmacol. 42, 821–826. 

89. Jankowski, A., Jankowska, A.L., Lamparczyk, H., 1998. Determinationand 

pharmacokinetics of acyclovir after ingestion of suspension form. Journal of 

Pharmaceuticaland Biomedical Analysis. 18, 249–254. 

90. Jerkovich, A.D., Mellors, J.S., Jorgensen, J.W., 2003. The use of micrometer-sized 

particles in ultrahigh pressure liquid chromatography. LC-GC North Americ. 

91. Joshi, A.J., Patel, R.P., 2012. Role of biodegrable polymer in drug delivery. Int. J. Curr. 

Pharm. Res. 4, 74-81. 

92. Kakran, M., Li, L., Muller, R.H., 2012. Overcoming the Challenge of Poor Drug 

Solubility. I,S,P.E. 32, 1-7. 

93. Khan, T.A., Khiang, P.K., 2002. Reporting Degree of Deacetylation Values of Chitosan: 

The Influence of Analytical Methods. J. Pharm. Pharm. Sci. 205-212. 

94. Khokale, A.S., Patil, P.M., 2014. Stability-indicating Spectrophotometric Method of 

Acyclovir in Bulk and Pharmaceutical Dosage Form. W.J.P.P.S. 3, 1235-1245 

95. Kharia, A.A., Singhai, A.K., 2015. Development and optimisation of mucoadhesive 

nanoparticles of acyclovir using design of experiments approach. J. Microencapsul. 32, 

521–532. 

96. Khotimchenko, Y.S., Khotimchenko, M.Y., 2004. Healing and preventive effects of 

calcium alginate on carbon tetrachloride induced liver injury in rats. Mar. Drugs. 2, 108–

122. 

97. Kingsley, J.D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H.E., Destache, C.J., 

2006. Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. J. 

Neuroimmune Pharmaco. 1, 340–350. 

98. Kogan, G., Soltés, L., Stern, R., Gemeiner, P., 2007. Hyaluronic acid: A natural 

biopolymer with a broad range of biomedical and industrial applications. Biotechnol. 

Lett. 29, 17–25. 



94 
 

99. Kolawole, O.A., Pillay, V., Choonara, Y.E., du Toit, L.C., Ndesendo, V.M.K., 2010. The 

influence of polyamide 6, 10 synthesis variables on the physiochemical characteristics 

and drug release kinetics from a monolithic tablet matrix. Pharm. Dev. Technol. 15, 

595-612. 

100. Kosta, A.K., Solakhia, T.M., Agrawal, S., 2012. Chitosan Nanoparticle- A Drug Delivery 

System. Int. j. pharm. biol. sci. arch. 3, 737-743. 

101. Kowalonek, J., Kaczmarek, H., 2010. Studies of pectin/polyvinylpyrrolidone blends 

exposed to ultraviolet radiation. European Polymer Journal. 46, 345–353. 

102. Krishnaiah, C.H., Reddy, R., Kumar, R., Mukkanti, K., 2010. Stability-indicating UPLC 

method for determination of Valsartan and their degradation products in active 

pharmaceutical ingredient and pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 

53, 483-489. 

103. Kumari, A., Yadav, S.K., Yadav, S.V., 2010. Biodegradable polymeric nanoparticles 

based delivery systems. Colloids Surf. B Biointerfaces. 75, 1-18. 

104. Lachmann, P., 1992. The use of animals in research. B.M.J. 305, 1277–1280. 

105. Lapcik, L., De Smedt, S., Demeester, J., Chabrecek, P., 1998. Hyaluronan: 

preparation, structure, properties, and applications. Chem. Rev. 98, 2663–2684. 

106. Laurent, T., 1998. The chemistry, biology and medical applications of hyaluronan and 

its derivatives. London: Portland Press. 

107. Laurent, T.C., Fraser, J.R., 1992. Hyaluronan. FASEB J. 6, 2397–2404. 

108. Leach, J.B., Bivens, K.A., Jr, C.W.P., Schmidt, C.E., 2003. Photocrosslinked hyaluronic 

acid hydrogels: Natural. biodegradable tissue engineering scaffolds. Biotechnol. 

Bioeng. 82, 578-589. 

109. Lee, S.H., Heng, D., Ng, W.K., Chan, H.K., Tan, R.B., 2011. Nano spray drying: A 

novel method for preparing protein nanoparticles for protein therapy. Int. J. Pharm. 403, 

192-200. 

110. Lee, K.Y., Kwon, I.C., Kim, Y.H., Jo, W.H., Jeong, S.Y., 1998. Structural investigation 

of chitosan self-aggregates prepared for gene delivery. Proc. Int. Symp. Control. Rel. 

Bioact. Mater. 25, 340–341. 

111. Lee, J.W., Park, J.H., Robinson, J.R., 2000. Bioadhesive-based dosage forms: the next 

generation. J. Pharm. Sci. 89, 850–866. 

112. Lee, Y., Kwon, I.C., Kim, Y.H., Jo, W.H., Jeong, S.Y., 1998. Preparation of chitosan 

self-aggregates as a gene delivery system. J. Control. Release. 51, 213– 220. 

113. Lehner, R., Wang, X., Marsch, S., 2013. Intelligent nanomaterials for medicine: Carrier 

platforms and targeting strategies in the context of clinical application. Nanomedicine: 

Nanotechnology, Biology, and Medicine. 9, 742–757. 

http://www.ncbi.nlm.nih.gov/pubmed/1563592


95 
 

114. Lemarchand, C., Gref, R.P., 2004. Couvreur, Polysaccharide-decorated nanoparticles. 

Eur. J. Pharm. Biopharm. 58, 327–341. 

115. Lewis, G.A., Mathieu, D., Phan,-Tan-Luu, R., 1999. Pharmaceutical Experimental 

Design, Marcel Dekker Inc.: New York: USA.[e-book, Available at: 

http://books.google.co.za/books?id=jqFZOyBtS98C&printsec=frontcover#v=onepage& 

q&f=false) Accessed 2014-03-31]. 

116. Li, F., Bae, B.C., Na, K., 2010. Acetylated Hyaluronic Acid/Photosensitizer Conjugate 

for the Preparation of Nanogels with Controllable Phototoxicity: Synthesis, 

Characterization, Autophotoquenching Properties, and in Witro Phototoxicity against 

HeLa Cells. Bioconjugate Chem. 21, 1312-1320. 

117. Li, X., Anton, N., Arpagaus, C., Belleteix, F., Vandamme, T.F., 2010. Nanoparticles by 

spray drying using innovative new technology: The BUCHI Nano Spray Dryer B-90. J. 

Control. Release. 147, 304-310. 

118. Likenhoker, J.R., Burkholder, TH, Linton, C.G.G., Walden, A., Abusakran-Monday, 

K.A., Rosero, A.P., Foltz, C.J., 2010. Effective and safe anesthesia for Yorkshire and 

Yucatan swine with and without cardiovascular injury and intervention. J. Am. Assoc. 

Lab. Anim. Sci. 49, 344-51. 

119. Lin, A., Liu, Y., Huang, Y., Sun, J., Wu, Z., Zhang, X., Ping, Q., 2008. Glycyrrhizin 

surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int. J. Pharm. 

359, 247–25. 

120. Lin, Y.H., Mi, F.L., Chen, C.T., Chang, W.C., Peng, S.F., Liang, H.F., Sung, H.W., 

2007. Preparation and characterization of nanoparticles shelled with chitosan for oral 

insulin delivery. Biomacromolecule. 8, 146-52. 

121. Lipinski, C.A., 2000. Drug-like properties and the causes of poor solubility and poor 

permeability. J. Pharmacol. Toxicol. Methods. 44, 235–249. 

122. Liu, G., Franssen, E., Fitch, M.I., Warner, E., 1997. Patient preferences for oral versus 

intravenous palliative chemotherapy. J. Clin. Oncol. 15, 110–5. 

123. Liu, Z., Jiao, Y., Wang, Y., Zhou, C., Zhan, Z., 2008. Polysaccharides-based 

nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60, 1650–1662. 

124. Lucatan Swine with and without Cardiovascular Injury and Intervention; Journal of 

American Association for Laboratory Animal Science; 49:344-351. 

125. Luessen, H.L., Leeuw, B.J.D., Langemeyer, M.W., Boer, A.G.D., Verhoef, J.C., 

Junginger,, H.E., 1996. Mucoadhesive polymers in peroral peptide drug delivery VI. 

Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin 

in vivo. Pharm. Res. 13, 1668-1672. 

http://www.ncbi.nlm.nih.gov/pubmed/20587167
http://www.ncbi.nlm.nih.gov/pubmed/20587167
http://www.sciencedirect.com/science/article/pii/S0169409X08002287
http://www.sciencedirect.com/science/article/pii/S0169409X08002287
http://www.sciencedirect.com/science/article/pii/S0169409X08002287
http://www.sciencedirect.com/science/article/pii/S0169409X08002287
http://www.sciencedirect.com/science/article/pii/S0169409X08002287


96 
 

126. Mahouche-Cherguia, S., Guerrouache, M., Carbonnier, B., Chehimi, M.M., 2013. 

Polymer-immobilized nanoparticles, Colloids and Surfaces A: Physicochem. Eng. 

Aspects. 439, 43– 68. 

127. Makadia, H.K., Siegel, S.J., 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable 

controlled drug delivery carrier, Polymers. 3, 1377-1397. 

128. Malavasi, L.M., Nyman, G., Augustsson, H., Jacobson, M,. Jensen-Waern, M., 2006. 

Effects of epidural morphine and transdermal fentanyl analgesia on physiology and 

behaviour after abdominal surgery in pigs. Lab Anim. 40, 16-27. 

129. Mansy, S.S., 2015. Membrane Transport in Primitive Cells. Published by Cold Spring 

Harbor Laboratory Press. Downloaded from :http://cshperspectives.cshlp.org/ on 

November 19 2015. 

130. Mascher, H., Kikuta, C., Metz, R., Vergin, H., 1992. New, high-sensitivity high-

performance liquid chromatographic method for the determination of acyclovir in 

human plasma, using fluorometric detection. J. Chromatogr. 583, 122-127. 

131. Maruyama, A., Ishihara, T., Kim, J., Kim, S.W., Akaike, T., 1997. Nanoparticle DNA 

Carrier with Poly(L-lysine) Grafted Polysaccharide Copolymer and Poly(D,L-lactic acid. 

Bioconjugate Chem. 8, 735−742 

132. Matyjaszewski, K., Xia, J.H., 2001. Atom transfer radical polymerization, Chem. Rev. 

101, 2921–2990. 

133. McEwen, B., 2002. The end of stress as we know it, Joseph Henry Press, Washington 

DC.  

134. McMullin, C.M., Kirk, B., Sunderland, J., White, L.O., 1996. Reeves DS, MacGowan 

AP. A simple high performance liquidchromatography (HPLC) assay for aciclovir and 

ganciclovirin serum. J. Antimicrob. Chemother. 38, 739–740. 

135. Metcalf, A.M., Phillips, S.F., Zinsmeister, A.R., MacCarty R.L., Beart R.W., Wolff B.G., 

1987. Simplified assessment of segmental colonic transit. Gastroenterology. 92, 40 47. 

136. Miller, E.R., Ullrey, D.E., 1987. The Pig as a Model for Human Nutrition; Annual Review 

of Nutrition. 7, 361-382. 

137. Misra, B.N., Dgra, R., 1980. Grafting onto starch. IV. Grafting copolymerization of 

methylmethacrylate by use of AIBN as radical initiator. J. Macromol. Sci. Chem. A. 14, 

763-770 

138. Moad, G., Rizzardo, E., Thang, S.H., 2005. Living radical polymerization by the RAFT 

process. Aus. J. Chem. 58, 379–410. 

139. Moideen, S.M., Kuppuswamy, S., 2014. Significance of nanoparticle drug delivery 

system than conventional drug delivery system of antihypertensive drugs. 3, 995-1019. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.ncbi.nlm.nih.gov/pubmed/16460586
http://www.ncbi.nlm.nih.gov/pubmed/1484085


97 
 

140. Moodley, K., 2013. A polymeric triple-layered tablet for stratified zero-order drug 

release, M Pharm dissertation, Department of Pharmacy and Pharmacology, University 

of the Witwatersrand. 

141. Mounir, L., 1996. Sterilization of Contaminated Matter with an Atmospheric Pressure 

Plasma. IEEE Transction on plasma Sceince. 24, 1188-1191. 

142. Mukhopadhyay, P., Mishra, R., Rana, D., Kundu, P.P., 2012. Strategies for effective 

oral insulin delivery with modified chitosan nanoparticles: A review. Prog. Polym. Sci. 

37, 1457–1475. 

143. Muralidharan, S., Kalaimani, J., Parasuraman, S., Dhanaraj, S.A., 2004. Development 

and Validation of Acyclovir HPLC External Standard Method in Human Plasma: 

Application to Pharmacokinetic Studies. pp. 1-5. 

144. Murayama, S., Kuroda, S., Osawa, Z., 1993. Hydrophobic and hydrophilic 

interpenetrating polymer networks composed of polystyrene and poly(2-hydroxyethyl 

methacrylate): 1. PS-PHEMA sequential IPNs synthesized in the presence of a 

common solvent. Polymer. 34, 2845-2852. 

145. Nakagawa, M., Tanaka, M., Miyata, T., 1997. Evaluation of collagen gel and hyaluronic 

acid as vitreous substitutes. Ophthalmic. Res. 29, 409–420.  

146. Ndesendo, V.M.K, Pillay, V., Choonara, Y.E., du Toit, L.C., Meyer, L.C.R., Buchmann, 

E., Kumar, P., Khan, R.A., 2011. In vivo evaluation of the release of zidovudine and 

polystyrene sulfonate from a dual intravaginal bioadhesive polymeric device in the pig 

model. J. Pharm. Sci. 100, 1416-1435. 

147. Nebinger, P., Koel, M., 1993. Determination of acyclovir byultrafiltration and high 

performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 619, 342–

344. 

148. Niwa, T., Takeuchi, H., Hino, T., Kunou, N., Kawashima, Y., 1993. Preparation of 

biodegradable nano-spheres of water soluble and insoluble drugs with D, L-lactide / 

glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, 

and the drug release behaviour. J. Control. Release. 25, 89-98. 

149. Niwa, T., Takeuchi, H., Hino, T., Kunou, N., Kawashima, Y., 1994. In vitro drug release 

behaviour of D, L-lactide / glycolide copolymer (PLGA) nanospheres with nafarelin 

acetate prepared by novel spontaneous emulsification solvent diffusion method. J. 

Pharm. Sci. 83, 727-732.  

150. Nordstrom, P., 2011. Formation of polymeric nanoparticles encapsulating and releasing 

a new hydrophobic cancer drug, Goteborg, Sweden. pp.1-50 

151. Nov´akov´a, L., Matysov´a, L., Solich, P., 2006. Advantages of application of UPLC in 

pharmaceutical analysis. Talanta. 68, 908–918. 



98 
 

152. Oberle, R.L., Das, H., Wong, S.L., Chan, K.K., Sawchuk, R.J., 1994. Pharmacokinetics 

and metabolism of diclofenac sodium in Yucatan miniature pigs. Pharmaceutical 

Research. 11, 698-703. 

153. Ochekpe, N.A., Olorunfemi, Ngwuluka N.C., 2009. Nanotechnology and Drug Delivery 

Part 2: Nanostructures for Drug Delivery. Trop. J. Pharm. Res. 8, 275. 

154. O’Connell, D.W., Birkinshaw, C., O’Dwyer, T.F., 2008. Heavy metal adsorbents 

prepared from the modification of cellulose: A review. Bioresour .Technol. 99, 6709-

6724. 

155. Oh, E.J., Park, K., Kim, K.S., Kim, J., Yang, J.A., Kong, J.H., Lee, M.Y., Hoffman, A.S., 

Hahn, S.K., 2010. Target specific and long-acting delivery of protein, peptide, and 

nucleotide therapeutics using hyaluronic acid derivatives. J. Control. Release. 141, 2–

12 

156. Oh, J.K., Lee, D.I., Park, J.M., 2009. Biopolymer-based microgels/nanogels for drug 

delivery application. Prog. Polym. Sci. 34, 1261-1282. 

157. Pandey, M.K., Tyagi, R., Yang, K., Fisher, J.R., Colton, C.K., Kumar, J., Parmar, S.V., 

Aiazian, E., Watterson, A.C., 2011. Design and synthesis of perfluorinatedamphiphilic 

copolymers: Smart nanomicelles for theranostic applications. Polymer. 52, 4727-4735. 

158. Park, K., Park, H., 1990. Test methods of bioadhesion. In: Lenaerts, V. and Gurny, R. 

(Eds.), Bioadhesive Drug Delivery Systems, CRC Press, Boca Raton, FL. pp. 43-64 

159. Patel, R., 2005. Mechanistic Profiling of Novel Wafer Technology Developed for Rate-

Modulated Oramucosal Drug Delivery. MPharm Dissertation, Department of Pharmacy 

and Pharmacology, University of the Witwatersrand. 

160. Pawar, S.N., Edgar, K.J., 2012. Alginate derivatization: a review of chemistry, 

properties and applications. Biomaterials. 33, 3279–3305. 

161. Peh, K.K., Yuen, K.H., 1997. Simple high-performance liquid chromatographic method 

for the determination of acyclovir in human plasma using fluorescence detection. J 

.Chromatogr. B Biomed. Sci. 241–244. 

162. Pham-Huy, C., Stathoulopoulou, F., Sandouk, P., Scherrmann, J.M., Palombo, S., 

Girre, C., 1999. Rapid determination of valaciclovir and acyclovir in human biological 

fluids by highperformance liquid chromatography using isocratic elution. J. Chromatogr. 

B. 732, 47–53. 

163. Polli, J.E., Rekhi, G.S., Augsburger, L.L., Shah, V.P., 1997. Methods to Compare 

Dissolution Profiles and a Rationale for Wide Dissolution Specifications for Metoprolol 

tartarate Tablets. J. Pharm. Sci. 86, 690–700. 

164.  Poirier, J.M., Radembino, N., Jaillon, P., 1999. Determination of acyclovir in plasma by 

solid-phase extraction and columnliquid chromatography. Therapeutic Drug Monitoring. 

21, 129–133. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


99 
 

165. Prestwich, G.D., Marecak, D.M., Marecek, J.F., Vercruysse, K.P., Ziebell, M.R., 1998. 

Controlled chemical modification of hyaluronic acid: synthesis, applications, and 

biodegradation of hydrazide derivatives. J. Controll. Release. 53, 93-103. 

166. Proano, M., Camilleri, M., Phillips, S.F.,  Brown M.L., Thomforde G.M., 1990. Transit of 

solids through the human colon: regional quantification in the unprepared bowel. Am. J. 

Physiol. 258, 856-862. 

167. Pruett, R.C., Schepens, C.L., Swann, D.A., 1979. Hyaluronic acid vitreous substitute; a 

six-year clinical evaluation. Arch. Ophthalmol. 97, 2325–2330. 

168. Qiu, Y., Park, K., 2012. Environment-sensitive hydrogels for drug delivery. Adv. Drug 

Deliv. Rev. 64, 49–60. 

169. Quimby F.W., 2002.  Animal Models in Biomedical Research. In: J.G. Fox, L.C. 

Anderson, F.M. Loew, F.W.Quimby, eds. Laboratory Animal Medicine (Second 

Edition). New York, Academic Press. Ch 30. 

170. Rajaonarivony, M., Vauthier, C., Couarraze, G., Puisieux, F., Couvreur, P., 1993. 

Development of a new drug carrier made from alginate. J. Pharm. Sci. 82, 912–917. 

171. Rao, J.P., Geckeler, K.E., 2011. Polymer nanoparticles: Preparation techniques and 

size-control parameters. Prog Polym Sci. 36, 887–913. 

172. Reddy, N., Yang, Y., 2010. Citric acid cross-linking of starch films. Food Chemistry. 

118, 702-711. 

173. Rodrigues, J.S., Santos-Magalhaes, N.S., Coelho, L.C.B.B., Couvreur, P., Ponchel, G., 

Gref, R., 2003. Novel core(polyester)-shell(polysaccharide) nanoparticles: protein 

loading and surface modification with lectins. J. Control. Release. 92, 103–112. 

174. Rowland, M., Tozer, T.N., 1995. Clinical pharmacokinetics concepts and applications, 

3rd ed. Lippincott Williams & Wilkins, Philadelphia, Pa. 

175. Rubinstein, R., 2000. Natural polysaccharides as targeting tools of drugs to the human 

colon. Drug Dev. Res. 50, 435–439. 

176. Samanidou, V.F., Giannakis, D.E., Papadaki, A., 2009. Development and validation of 

an HPLC method for the determination of seven penicillin antibiotics in veterinary drugs 

and bovine blood plasma. J. Sep. Sci. 32, 1302-1311. 

177. Sarmento, B., Ribeiro, A., Veiga, F., Sampaio, P., Neufeld, R., Ferreira, D., 2007. 

Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 24, 

2198–206. 

178. Schafroth, N., Arpagaus, C., Jadhav, U.Y., Makne, S., Douroumis, D., 2012. Nano and 

microparticles engineering of water insoluble drugs using a novel spray-drying process. 

Colloids. Surf. B Biointerfaces. 90, 8-15. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


100 
 

179. Schanté, C.E., Zuber, G., Herlinb, C., Vandamme, T.F., 2011. Chemical modifications 

of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical 

applications. Carbohydr. Polym. 85, 469–489. 

180. Schmid, K., Arpagaus, C., Friess, W., 2009. Evaluation of a vibrating mesh spray dryer 

for preparation of submicron particles, Respiratory Drug Delivery Europe. 323-326. 

181. Sell, S.A., Wolfe, P.S., Garg, K., McCool, J.M., Rodriguez, I.A., Bowlin, G.L., 2010. The 

Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular 

Matrix Analogues. Polymers. 2, 522-553. 

182. Sen, G., Singh, R.P., Pal, S., 2010. Microwave-initiated synthesis of polyacrylamide 

grafted sodium alginate: synthesis and characterization. J. Appl. Polym. Sci. 115, 63–

71. 

183. Shaikh RP. 2012. Oral Electrospun Multi-Component Membranous Drug Delivery 

Systems. MPharm Dissertation, Department of Pharmacy and Pharmacology, 

University of the Witwatersrand. 

184. Simone, E.A., Dziubla, T.D., Muzykantov, V.R., 2008. Polymeric carriers: role of 

geometry in drug delivery, Informa UK Ltd London. UK Drug Deliv. 5, 1283-1300. 

185. Singh, B, Kumar, R., Ahuja, N., 2005. Optimizing drug delivery systems using 

systematic Design of Experiments. Part I: Fundamental aspects. Crit. Rev. Ther. Drug 

Carrier. Syst. 22, 27-105. 

186. Sinha, V.R., Kumria, R., 2001. Polysaccharides in colon-specific drug delivery. Int. J. 

Pharm. 224, 19–38. 

187. Sinha, V.R., Trehan, A., Kumar, M., Singh, S., Bhinge J.R., 2007. Stress Studies on 

Acyclovir. J. Chromatogr. Sci. 45, 319-24. 

188. Sionkowska, A., 2011. Current research on the blends of natural and synthetic 

polymers as new biomaterials: Review. Prog. Polym. Sci. 36, 1254-1276. 

189. Sionkowska, A., 2003. Interaction of collagen and poly(vinyl pyrrolidone) in blends. 

EurPolym. J. 39, 2135–2140. 

190. Sionkowska, A., 2003. Interaction of collagen and poly(vinyl pyrrolidone) in blends. 

EurPolym. J. 39, 2135–2140. 

191. Sonia, T.A., Sharma, T.C., 2011. Chitosan and Its Derivatives for Drug Delivery 

Perspective. Adv. Polym. Sci. 243, 23–54. 

192. Soumya, R.S., Vineetha, V.P., Reshma, P.L., Raghu, K.G., 2013. Preparation and 

Characterization of Selenium Incorporated Guar Gum Nanoparticle and Its Interaction 

with H9c2 Cells. PLoS one. 8, 744-11. 

193. Stokes, W.S., Marsman, D.S., 2014. Animal Welfare Considerations in Biomedical 

Research and Testing. In: K.Bayne, P.V. Turner, eds., Laboratory Animal Welfare. New 

York: Academic Press. Ch 9.’ 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


101 
 

194. Stuart, B., 2004. Infrared Spectroscopy: Fundamental and Applications. John Wiley & 

sons, Ltd ISBNs: 0-470-85427-8 (HB); 0-470-85428-6 (PB). pp. 1-221. 

195. Susantakumar, P., Gaur, A., Sharma, P., 2011. Comparative Pharmacokinetics, Safety 

and Tolerability Evaluation of Acyclovir IR 800 Mg Tablet in Healthy Indian Adult 

Volunteers Under Fasting and Non-fasting Conditions. J. Bioequiv. Availab. 3, 6  

196. Svensson, J.O., Barkholt, L., Sawe, J., 1997. Determination of Acyclovir and its 

metabolite 9-carboxymethoxymethylguaninein serum and urine using solid-phase 

extraction and highperformance liquid chromatography. J. Chromatogr. B Biomed. Sc.i 

Appl. 690, 363–366. 

197. Swart, K.J., Hundt, H.K.L., Groenewald, A.M., 1994. Automatedhigh-performance liquid 

chromatographic method forthe determination of acyclovir in plasma. Journal of 

ChromatographyA. 663, 65–69. 

198. Teshima, D., Otsubo, K., Yoshida, T., Itoh, Y., Oishi, R., 2003. A simple and 

simultaneous determination of acyclovir and ganciclovir in human plasma by high-

performance liquid chromatography, Biomed. Chromatogr. 17, 500–503. 

199. Thanki, K., Gangwal, R., Sangamwar, A.T., Jain, S., 2013. Oral Delivery of Anticancer 

Drugs: Challenges and Opportunities. J. Control. Release. 170, 15–40. 

200. Tomar, V., Garud, N., Kannojia, P., Garud, A., Jain, N.K., Singh, N., 2010. 

Enhancement of Solubility of Acyclovir by Solid Dispersion And Inclusion Complexation 

Methods. Der. Pharmacia. Lettre. 2, 341-352 

201. Toole, B.P., 2004. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. 

Cancer. 4, 528–539. 

202. Trimaille, T., Mondon, K., Gurny, R., M¨oller, M., 2006. Novel polymeric micelles for 

hydrophobic drug delivery based onbiodegradable poly(hexyl-substituted lactides). Int. 

J. Pharm. 319, 147–154. 

203. Tzanavaras, P.D., Themelis, D.G., 2007. High-throughput HPLC assay of acyclovir and 

its major impurity guanine using amonolithic column and a flow gradient approach. J. 

Pharm. Biomed. Anal. 43, 1526–1530. 

204. Ueda, M., Iwara, A., Kreuter, J., 1998. Influence of the preparation methods on the 

drying release behavior of loperamide-loaded nanoparticles. J. Microencapsulation. 15, 

361–372. 

205. Vandamme, T.F., Lenourry, A., Charrueau, C.J., 2002. Chaumeil, The use of 

polysaccharides to target drugs to the colon. Carbohydr. Polym. 48, 219–231. 

206. Vandermeulen, G.W.M., Klok, H.A., 2004. Peptide/protein hybrid materials: Enhanced 

control of improved performance through conjugation of biological and synthetic 

polymers structure. Macromol. Biosci. 4, 383–398. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


102 
 

207. van Hest, J.C.M., 2007. Biosynthetic-synthetic polymer conjugates, Journal of 

Macromolecular Science, Part C: Polymer Reviews. 47, 63-92. 

208. Vashista, A., Guptab, Y.K., Ahmada, S., 2012. Interpenetrating biopolymer network 

based hydrogels for an effective drug delivery system. Carbohydr. Polym. 87, 1433–

1439. 

209. Vilar, G., Tulla-Puche, J., Albericio, F., 2012. Polymers and Drug Delivery Systems.  

Curr. Drug Deliv. 9, 367-394 

210. Volpato, N.M., Santi, P., Laureri, C., Colombo, P., 1997. Assay of acyclovir in human 

skin layers by high performance liquid chromatography. J. Pharm Biomed. Anal. 16, 

515–520. 

211. Wagstaff, A.J., Faulds, D., Goa, K.L., 1994. Aciclovir. A reappraisal of its antiviral 

activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 47, 153- 205. 

212. Waman, N., Ajage, R., Kendre, P.N., Kasture, S.B., Kasture, V., 2014. Improved 

release oral drug delivery of metaxalone. Int J. Pharm. 4, 417-424. 

213. Wang, T., Bai, J., Jiang, X., Nienhaus, G.U., 2012. A Study Combining Confocal 

Microscopy with FTIR Specroelectrochemistry. Cellular Uptake of Nanoparticles by 

Membrane Penetration. 2, 1251-1259. 

214. Werkmeister, J.A., Edwards, G.A., Casagranda, F., White, J.F., Ramshaw, J.A.M., 

1998. Evaluation of a collagen-based biosynthetic materials for the repair of abdominal 

wall defects. J. Biomed. Mater. Res. 39, 429–36. 

215. Werle, M., Takeuchi, H., Bernkop-Schnurch, A., 2009. Modified chitosans for oral drug 

delivery. J. Pharm. Sci. 98, 1643–56 

216. Wojtacki, J., Rolka-Stempniewicz, G., Grzegorczyk, G., 2006. Breast cancer patients 

pref erences for oral versus intravenous second-line anticancer therapy. Eur. J. Can 

cer (Suppl.). 4, 159–160. 

217. Wong, T.W., 2011. Alginate graft copolymers and alginate–co-excipient physical 

mixture in oral drug delivery. JPP. 63, 1497–1512. 

218. Xiao, H., Lin, Q., Liu, G., 2012. Effect of Cross-Linking and Enzymatic Hydrolysis 

Composite Modification on the Properties of Rice Starches. Molecules. 17, 8136-8146. 

219. Xu, W., Ling, P., Zhang, T., 2013. Polymeric Micelles, a Promising Drug Delivery 

System to Enhance Bioavailability of Poorly Water-Soluble Drugs. 1-15. 

220. Xu, X., Jha, A.K., Harrington, D.A., Farach-Carson, M.C., Jia, X., 2012. Hyaluronic 

Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks. Soft. 

Matter. 8, 3280–3294. 

221. Yang, K.W., Li, X.R., Yang, Z.L., Li, P.Z., Wang, F., Liu, Y., 2009. Novel polyion 

complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: in vitro and 

in vivo characterization. J. Biomed. Mater. Res. A. 88,140–148. 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init


103 
 

222. Yerushalmi, N., Margalit, R., 1998. Hyaluronic Acid-Modified Bioadhesive Liposomes 

as Local Drug Depots: Effects of Cellular and Fluid Dynamics on Liposome Retention 

at Target Sites. 349, 21-26. 

223. Yi, Y.M., Yang, T.Y., Pan, W.M., 1999. Preparation and distribution of 5-fluorouracil 

125I sodium alginate-bovine serum albumin nanoparticles. World J. Gastroentero. 5, 

57–60. 

224. Yih, T.C., Al-Fand, M., 2006. Engineered nanoparticles as precise drug delivery 

systems. J. Cell. Biochem. 28, 1258-1266. 

225. Yuri, S.L., 2002. Polymer blends and interpenetrating polymer networks at the interface 

with solids. Prog. Polym. Sci. 27, 1721–1801 

226. Zeng, L., Nath, C.E., Shaw, P.J.; Earl, J.W., McLachlan, A.J., 2008. HPLC-

fluorescence assay for acyclovir in children. Biomed. Chromatogr. 22, 879–887. 

227. Zhang, N., Wardwell, P.R., Bader, R.A., 2013. Polysaccharide-Based Micelles for Drug 

Delivery. Pharmaceutics. 5, 329-352. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

APPENDIX A 

SEMI-SYNTHETIC BIOPOLYMER COMPLEXES: MODIFIED POLYSACCHARIDES AS 

ORAL DRUG NANO-CARRIERS FOR ENHANCEMENT OF ORAL BIOAVAILABILITY 

Mduduzi N. Sithole1, Yahya E. Choonara1, Lisa C. du Toit1, Pradeep Kumar1, Pierre P. D. 

Kondiah1 and Viness Pillay1* 

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and 

Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the 

Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa 

*Corresponding Author: viness.pillay@wits.ac.za

Abstract 

Semi-Synthetic Biopolymer Complexes have potential as nano-carriers for oral drug delivery 

due to their exceptional properties obtained by merging the properties of synthetic (e.g. good 

thermal and mechanical properties) with natural polymers (e.g. biocompatibility); thus, 

forming a new class of biopolymer materials incorporating the best of both worlds. Despite 

development in drug delivery systems, oral administration of therapeutic agent is still 

preferred. Several nano-polymeric systems has been prepared and characterized based on 

both synthetic polymers and natural polymers, each with its limitations and advantages. 

Among natural polymers, alginate, chitosan, and hyaluronic acid have been studied broadly 

for the fabrication of nanoparticles systems. This review discusses a newly investigated class 

of polymer called Semi-Synthetic Biopolymer Complexes (SSBCs) as oral drug nano-

carriers. It also discusses certain significant structural and functional attributes or effects 

which are essential to be taken into consideration when an oral drug delivery system is 

developed. The review is aimed at describing complexation of few natural polymers (e.g. 

polysaccharides) with selected synthetic polymers or synthetic chemicals to indicate some of 

the factors that influence preparation, solubility, formation and stability of these Semi-

Synthetic Biopolymer Complexes. 

Keywords: Semi-Synthetic Biopolymers, Drug bioavailability, Oral drug nano-carrier 
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Development of Novel Polymeric Nano-Composite Complex for Low Bioavailability Drugs 

Mduduzi N. Sithole1, Yahya E. Choonara1, Lisa C. du Toit1, Pradeep Kumar1, Pierre P. D. 

Kondiah1 and Viness Pillay1* 

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and 

Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the 

Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa 

*Corresponding Author: viness.pillay@wits.ac.za 

 

Abstract 

The major challenge in pharmaceutical research is to improve drug’s effectiveness. This 

research attempts to improve the permeability and solubility of acyclovir (ACV), which has an 

oral bioavailability of 10-20%. The research also seeks to develop guiding principles in 

examining and solving key issues of its nano-encapsulation as a means to enhance its oral 

bioavailability. In this study, a delivery system was designed for ACV, with desirable 

physicochemical and physicomechenical properties engineered by grafting/modifying natural 

polymer with synthetic polymer. The resulted hybrid was conjugated with an oral absorption 

enhancer yielding a specialized Polymeric Nano-Enabled Complex (PNC) to regulate ACV 

permeability and solubility, producing an ―intelligent‖ nano-enabled drug delivery system. 

Hence, a PNC was synthesized, and the permeability and solubility of ACV drug from the 

PNC ascertained, to assess the enhancement of ACV oral bioavailability. The synthetic 

method of PNC copolymer was based on the covalent coupling of the polymeric chains at 

their respective reactive functional groups, followed by conjugation with the absorption 

enhancer. The coupling was accomplished using a variety of chemical means. Nanoparticles 

were prepared from PNC using emulsion technique. Different characterization methods such 

as FT-IR, DSC, 1H NMR, and XRD amongst others were used to confirm the successful 

preparation of TPSNC and also the success of ACV encapsulation. The current investigation 

provided evidence that the biopolymer PNC copolymer improved the solubility of ACV by 

30% and the ex vivo permeation by 10% compared to the conventional ACV, consequentially 

enhanced its bioavailability.  

 

Key Words: solubility, conjugation, semi-synthetic, encapsulation. 

 

 

 

mailto:viness.pillay@wits.ac.za


106 

APPENDIX C 



Assoc Prof Kennedy H. Erlwanger 
School of Physiology 

Faculty of Health Sciences, University of the Witwatersrand 
7 York Road, Parktown, 2193 
SOUTH AFRICA 

Private bag 3, Wits, 2050, South Africa. 
Tel: +27 (0)11 717 2454 
Fax: + 27 (0)11 643 2765 
Email: Kennedy.Erlwanger@wits.ac.za 

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG 
7 York Road, Parktown, 2193 South Africa * E-mail physiology@health.wits.ac.za * Telephone (011)717-2363 * Fax (011) 643-2765  

_____________________________________________________ 

10 April 2014 

To:  Whom it may concern, 

Re: approval for the use of animal tissue samples collected from pigs and 

rabbits euthanized for other purposes in in vitro studies 

This letter is to confirm that Prof Viness Pillay does not require full animal ethics 

clearance to collect pig intestinal tissue. Prof Pillay and his student will be using 

intestinal tissue from already euthanized animals, hence full animal ethics clearance 

is not required, as these animals have been euthanized for other purposes. The 

intestinal tissue from the pigs for in vitro studies will be collected with permission 

from the Central Animal Service Unit at the University of the Witwatersrand. A 

request for permission to the Animal ethics committee has been initiated. 

The following Master of Science in Medicine (Pharmaceutics) student will be 

involved in these studies as of 2014: Mduduzi Sithole (student number 0309004W). 

The title of the project is “The Application of Semi-Synthetic Biopolymer Nano-carrier 

Complexes for Drugs with low Oral Bioavailability”. 

These studies will be performed in the Division of Pharmacology, Department of 

Pharmacy and Pharmacology. 
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Yours sincerely, 

Kennedy Erlwanger  
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