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Abstract. The objective of this study was to prepare time-controlled release etodolac
pellets to facilitate drug administration according to the body’s biological rhythm, optimize
the drug’s desired effects, and minimize adverse effects. The preparation consisted of three
laminal layers from center to outside: the core, the swelling layer, and the insoluble polymer
membrane. Factors influenced the core and the coating films were investigated in this study.
The core pellets formulated with etodolac, lactose, and sodium carboxymethyl starch (CMS-
Na) were prepared by extrusion-spheronization and then coated by a fluidized bed coater.
Croscarmellose sodium (CC-Na) was selected as the swelling agent, and ethyl cellulose (EC)
as the controlled release layer. The prepared pellets were characterized by scanning electron
microscopy and evaluated by a dissolution test and a pharmacokinetic study. Compared with
commercial available capsules, pharmacokinetics studies in beagle dogs indicated that the
prepared pellets release the drug within a short period of time, immediately after a
predetermined lag time. A good correlation between in vitro dissolution and in vivo
absorption of the pellets was exhibited in the analysis.
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INTRODUCTION

Most of the traditional design of the drug delivery system
has always been based on the concept of homeostasis
originated by Claude Bernard (1). These drug dosage forms
typically provide an immediate or rapid medicine release.
Frequent administration is required to maintain the effective
plasma drug concentration, which lead to poor patient
compliance and low drug efficacy. Accordingly, modified drug
release dosage forms, such as sustained-release and
controlled-release drug delivery system emerge on this basis
(2).These preparations are featured with continuous or
constant release to maintain drug concentrations in the
human body. However, long-term constant drug concentra-
tions in the blood and tissue can cause problems such as
resistance, tolerance, and drug side effects (3,4).Moreover,
studies have shown that lots of diseases, such as arthritis,
asthma, and angina, could outbreak circadianly and rhythmi-
cally (5,6). The modified drug release dosage forms could not
fulfill the clinical treatment for these diseases. With the
development of chronobiology and chronopharmacology, oral
chronophopharmacologic drug delivery system (OCDDS) has
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become a topic of interest within pharmaceutical formulation
in recent years.

OCDDS is a drug delivery system based on chronoth
erapeutics, which pharmacodynamic is timed to match rhythms
of disease in order to minimize side effects and optimize
therapeutic outcomes (7). This system is characterized by a
predetermined lag time generally brought by multi-layer coating
method (8,9). Gastrointestinal fluids penetrate through the
polymer coating, the swelling layer expands until the outer
polymer coating ruptures and the drug makes a pulsatile release
and then release rapidly and completely (10). The impact
dosage helps to avoid first-pass effect and increases drug
absorption. An improved drug bioavailability leads to an
evident reduction of administration frequency, an increase of
patient compliance, and an enhancement in therapeutic efficacy.
Moreover, researchers have found that these drugs generally
release in the terminal of the gastrointestinal tract, such as distal
ileum and colon (11). Not only can it avoid the damage by gastric
acid, but also reduce the irritation to stomach.

Chronobiology has a prominent role in rheumatoid
arthritis (RA), with major symptoms such as joint pain and
stiffness being most pronounced in the morning, possibly
mediated by circadian rhythms of cytokine and hormone
levels. Etodolac is a potent non-steroidal anti-inflammatory
drug (NSAID) (12,13) employed in the management of
chronic pain such as patients with inflammatory arthritis
(14,15). Etodolac could be used as an analgesic due to its
inhibition of cyclo-oxygenase enzyme and prostaglandin

1530-9932/17/0000-0001/0 © 2017 American Association of Pharmaceutical Scientists


http://crossmark.crossref.org/dialog/?doi=10.1208/s12249-017-0873-3&domain=pdf

synthesis (16,17). By high selectivity and inhibiting of COX-2
(18-20), etodolac exerts anti-inflammatory effect and protects
the gastric mucosa at the same time (21). Etodolac has also
been shown to have the capability of retarding the progres-
sion of the skeletal changes associated with rheumatoid
arthritis (22). The anti-inflammatory efficacy of etodolac,
together with its safety profile, reveals that etodolac is
distinguished among anti-inflammatory agents.

OCDDS can be classified as single-unit and multi-unit drug
delivery system. Differ from tablets, pellets are multi-particulate
dosage forms qualified with many new characteristics. The
potential benefits related to pellets are that they enlarge the
drug release area generally and enable drug absorption not to
affect by gastric emptying. Dispersed widely in vivo, pellets
could reduce the risk of systemic toxicity and local irritation. All
the merits of pellets make it an ideal for pulsatile preparation.

In this study, a two-layered pulsatile release pellets
system containing etodolac was studied. Taken before bed-
time as a principle, the pellets released after a lag time before
dawn in the next day, which made it possible to coincide with
the circadian rhythm of RA and resulted in reduced morning
stiffness and pain. The drug-loaded core pellets formulated
with microcrystalline cellulose (MCC), CMS-Na, and lactose
were prepared by extrusion-spheronization, and then layered
with a swelling layer followed by a water-insoluble control
layer through a fluidized bed coater. The effects of pellets
with various coating types and coating levels on the lag time
and the drug release time were studied by in vitro dissolution
tests. The pellets were also evaluated in vivo by studying the
pharmacokinetics after oral administration in beagle dogs.

MATERIALS AND METHODS

Materials

Etodolac (99.5% purity) was purchased from Shouxin
Pharmaceutical Chemicals Co. Ltd., Zhejiang, China. Lactose,
monopotassium phosphate, and diethyl phthalate were bought
from Bodi Chemicals Co. Ltd., Tianjin, China. CMS-Na and low
substituted hydroxypropyl methyl cellulose 21 (L-HPC 21) was
obtained from Aoda Pharmaceutic Adjuvant Industry, Yingkou,
China. CC-Na, cross-linking polyvingypyrrolidone (PVP), and
microcrystalline cellulose PH101 (MCC PHI101) were kindly
supplied by J.Rettenmaier & shone GmbH & Co. KG,
Rosenberg, Germany. Ethyl cellulose (EC, 10 cps) was received
as a gift from DOW Chemical Company, New York, USA.
Triethyl citrate (TEC) was obtained from Rohm, Germany.
Hydroxypropyl methylcellulose E5 (HPMC ES5, 5 cps) was
kindly supplied by Colorcon, USA. All other chemicals and
reagents used in the study were of analytical grade.

Preparation of Pellets

Preparing of Drug-Loaded Pellets

The drug-loaded pellets were prepared by extrusion-
spheronization process. Firstly, powders consist of etodolac-
MCC-lactose-CMS-Na (40%:40%:10%:10%, wiw/w/w) were
mixed uniformly, and appropriate quantity of water was used as
adhesive to combine powder mixture together. In order to achieve
appropriate consistency of the wet mass, the adhesive needs to be
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added slowly and stirred evenly. Then the wet mass was
immediately extruded at 30 rpm with a sieve plate of 0.8-mm
diameter through an extruder (Yingge Pharmaceutical Machinery
Co., Ltd., Chongging, China). The extrudate was collected and
spheronized at 600 rpm for 5 min on a 30-cm diameter plate of
spheronizer (Yingge Pharmaceutical Machinery Co., Ltd., Chong-
qging, China). The prepared pellets were spread out on plates in a
thin layer and dried in a hot-air oven (101-2AB, Taisite Instrument
Co., Ltd., Tianjin, China) at 40°C for 24 h. The size fraction was
separated by dry sieving with a set of standard screens with square
openings (Hongxing Instrument Factory, Zhejiang, China).

Coating of the Pellets

The formulation together with process parameters of
swelling and controlled layers was shown in Table I as follows.
Swelling layer coating solution: CC-Na was used as disintegrants
in this study, since it possess an excellent swelling property
(23,24). HPMC ES5 was first dissolved in hot water with
continuous stirring until complete dissolution and then blended
with 80% ethanol to 100 ml. CC-Na was added gradually to the
solution with intensive agitation. The solution was homogenized
by means of a magnetic stirrer (Lecheng Electric Appliance
Factory, Zhejiang, China). Gentle stirring was continued during
the entire coating process using the magnetic stirrer. Controlled
layer coating solution: EC, as a kind of macromolecule polymer,
with its low water permeability, can prevent water from pouring
into the pellets core. Allowing for its poor ductility, TEC was used
as plasticizer to make the film more flexible and more difficult to
rupture. Plasticizer was added based on the total solids content of
the solution (25). EC and TEC were dispersed in 80% ethanol to
100 ml and homogenized with constant stirring.

Thirty to 35 mesh drug-loaded pellet cores were sieved and
coated in a fluid bed coater (DPL1/3 Multi-processor, Jinggong
Pharmaceutical Machinery Co., Ltd., Chongqing, China) until 35%
weight gain of swelling layer and 8% weight gain of controlled
layer. After coating, the pellets were dried in the oven for further
12 h at 40°C and stored in sealed container until analysis.

Characterization of the Pellets

Sphericity and Roundness

Sphericity and roundness are important characters of pellets.
Highly spherical pellets flowed easily, which made them ideal for
the following processes, coating, tableting, and packaging (26).
One-plane-critical-stability (OPCS) method (27,28) was used to
evaluate the quality of the pellets. Put 10 g of pellets on a flat plate,
lift one side of the plate until the pellets rolled down, measure the
length of the plate and the raised height before rolling. The critical
angle was calculated as: o = arc sin(h/l),where h and [ were the
height and length of the plate, respectively. The smaller the critical
angle was, the better the roundness of the pellets.

Density

Based on the USP 40, weigh 30-35 mesh pellets 50 g, put
them into a 100-ml plastic graduate, the bulk density was
calculated as the ratio of weight to the occupied volume. Drop
down from the height of 2 cm at different times until there was no
variation in volume was observed, and then measure the volume
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Table I. Formulation and Process Parameters of Swelling and Controlled Layer

Coating layer Ingredient Blower frequency Atomizing pressure Inlet temperature Rotational speed

Swelling layer CC-Na (5 g) 35 Hz 0.15 MPa 45°C 0.75 ml/min
HPMC E5S (1 g)
80% ethanol (100 ml)

Controlled layer EC (3 ¢) 35 Hz 0.15 MPa 35°C 0.5 ml/min
TEC (0.3 g)

80% ethanol (100 ml)

(29). Bulk density was calculated as: ppux = W/Vpui, where W was
the weight of the pellets and Vi was the initial unsettled
apparent volume. Tapped density was calculated as: piappea = W/
Viapped, Where W was the weight of the pellets and Vippeq Was the
final tapped volume. Compressibility index (CI) and Hausner
ratio (HR), which were calculated from bulk and tapped densities,
were significant parameters for evaluation of flowing properties,
as fOHOWS’ CI=100x [(plapped - pbulk)/ptapped)] > HR = ptapped/
Pbulk -

Friability Test

Friability test was performed using a friabilator (CJY-300B,
Huanghai Pharmaceutical Control Equipment Co. Ltd., Shang-
hai, China). The pre-weighted pellets sample of 10 g were placed
and run in the friabilator for 4 min at 25 rpm (29). Collect the
remaining pellets and sieve them through 35 mesh screens.
Reweigh the sample and the friability (Fr) was calculated as:
Fr = (W;-Wp)/W,, where W; is the initial weight before the test
and Wi is the final weight after the test of the sample.

Process Yield

The process yield (Yd) was calculated by the weight (W)
of pellets sieved through 30-35 mesh in the end and the
theoretical weight (W,) of the formulation (30) . The formula
was as follows, Yd(%) = W/ W,
Scanning Electron Microscopy

Both surface and cross-section morphology of the pellets
were carried out through scanning electron microscopy
(SEM) (S-3700N, Hitachi, Japan).

In Vitro Dissolution Test

In vitro dissolution test was performed in phosphate
buffer solution (pH 7.4) using a ZRCD6-B dissolution tester

(Huanghai Drug Testing Instrument Factory, Shanghai,
China) based on the USP 40 apparatus 2 (paddle apparatus).
Maintain 37 % 0.5°C and rotation speed of 100 rpm. Each
sample (5 ml) was withdrawn at predetermined times at 1, 2,
3,4, 6,8, 10, and 12 h. The solubility of etodolac in pH 7.4
buffer was 9.60 g/L. by experiment, which could met the
determination requirement of sink condition completely.
Each sample was immediately passed through a 0.8-um
millipore filter and analyzed by a UV spectrophotometer
(UV-9100, Ruili Analytical Instrument Co., Ltd., Beijing,
China) at 278 nm. Each batch of pellets was prepared in
triplicate and the experiment was repeated thrice.

In Vivo Pharmacokinetics Studies

Experiment Design

A random, cross-over, and single-dose pharmacokinetic
study was conducted on a total of six healthy male beagle
dogs, weighting 18 + 2 kg. The dogs were divided randomly
into two groups, and fasted overnight for at least 12 h prior to
the experiment with free access to water. Each group was
orally administered with the test pellets and the reference
pellets (Guangzhou Nanxin Pharmaceutical Co. Ltd., batch
number: EBT10143) at a dose equivalent to 200 mg, respec-
tively. Each blood sample (5 ml) was collected from ante-
brachium vein at predetermined time intervals: 0 (pre-dose),
0.5,1,1.5,2.,3 4,6.,8,10,12,16, and 24 h (post dose), and put
into heparinized tubes immediately. After separated by
centrifugation at 3000 rpm for 10 min, plasma samples were
withdrawn and stored at — 4°C for subsequent analysis. There
was a 7-day washout period between two treatments. All
animal procedures were approved by University Ethics
Committee for the use of experimental animals and carried
out in strict accordance with the National Institute of Health
Guide for the Care and Use of Laboratory Animals.

Table II. Effects of Types of Disintegrant and Drug Content on Repose Angle and Yield of Time-Controlled Etodolac Pellets

Formulation Critical angle (degree) Yield (%)
Type of disintegrant M1 CMS-Na 17.5 723

M2 CC-Na 223 554

M3 L-HPC 12.6 80.3
Drug content (%) N1 30% etodolac 15.7 85.6

N2 40% etodolac 17.2 78.4

N3 50% etodolac 253 56.3




HPLC Assay

A validated HPLC system was used to determine
etodolac plasma concentration. The mobile phase was made
up of methanol-potassium dihydrogen phosphate buffer
(88:12, v/v, pH 4.5) (30). Chromatographic separation was
performed at a flow rate of 1.0 ml/min, wave length of
278 nm, using a diamonsil C;g column (4.6 x 200 mm, 5 pum)
and column temperature maintained at 30°C.

Pharmacokinetic Data Analysis

Pharmacokinetic analysis was conducted using the soft-
ware program DAS 2.1.1.The most suitable compartment
model was determined by the smallest AIC value (31,32).
Etodolac plasma concentration was plotted against time to
obtain the concentration-time profiles which was used to
determine the peak blood concentration (Cp,.x) and time to
achieve the peak concentration (7y,,x). Non-compartmental
pharmacokinetic analysis was conducted to calculate the area
under the curve. The relative bioavailability (F) was deter-
mined by the ratio of AUC for the test formulation (AUCr)
and the reference formulation (AUCR).

Bioequivalency Analysis

Two one-sided ¢ tests were used to evaluate whether the
90% confidence interval of the geometric mean ratios (test:
reference) for these parameters were within the range of
80.00 ~ 125.00% (using log transformed data).

In Vitro-In Vivo Correlation Analysis

In this study, DAS 2.1.1 pharmacokinetic software package
was employed to in vitro-in vivo correlation (IVIVC) analysis
which can be used to describe the relationship between the
in vitro property and the in vivo response of an oral dosage form.
Percent dissolved (F;) values were taken from in vitro release,
and percent absorbed (F,) was determined by the Wanger-
Nelson method using the following equation:

Ct+k AUCO-t

Fa (%) = = A0C0=

x 100%

where F, is the fraction of drug absorbed, C, is the drug plasma
concentration at time ¢, k is the elimination rate constant, AUC,_
»and AUC,_,, are areas under the curve between time zero and
time ¢ and between time zero and infinity, respectively.

RESULT AND DISCUSSION
Preparing of Pellets Cores
Types and Amounts of Adhesives

Different adhesive agents had different effects on
properties of pellets. In this study, with the ratio of powder
and binder 1:1(w/w), 20, 40, 60, and 80% ethanol and water
were investigated to find the effect of adhesive agents on the
formulation of pellets. The study indicated that pellets had
good formability, low friability, and good flow property when
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Fig. 1. Effects of types of disintegrantson release behavior of
etodolac pellets

water was used as a binder. When the weight of water and
powder reached a ratio of about 1:1, the extruded strip had
moderate humidity and can be made into pellets of uniform
particle size. However, pellets made from ethanol or ethanol-
water mixture as adhesives were more fragile and less
suitable for coating.

Types and Ratio of Disintegrants

Maintain the drug loading of 40%, together with a constant
ratio of MCC and disintegrants, add varieties of disintegrants to
get the different pellets. Sphericity, release behavior, and yield
of target pellets were investigated in the study. Table II revealed
that CC-Na pellets were worst both in roundness and yield while
L-HPC pellets showed best performance. However, according
to Fig. 1, CMS-Na pellets reached nearly 90% drug release
within the shortest time of 30 min among the three, and followed
by CC-Na pellets with the time of 45 min, while L-HPC pellets
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Fig. 2. Effects of CMS-Na and lactose content on release behavior of
etodolac pellets
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Fig. 3. Effects of drug content on release behavior of etodolac pellets

reached only 58% drug release in 1 hour. Therefore, the drug
release of L-HPC pellets is slower than the other two, which is
not suitable to serve as the pellets core. CMS-Na pellets had
faster release behavior, and relatively proper sphericity and
yield. Take these factors into consideration; CMS-Na was
selected as the desired disintegrants.

It was reported that the effect of disintegrants on
dissolution rate of MCC pellets made by extrusion-
spheronization was moderate (33-35). Therefore, lactose,
with its hydrotropic property, was considered to be added to
optimize the performance of pellets together with the
disintegrants (8,10,36-38). At the beginning of the experi-
ment, fact was that pellets were difficult to form when the
ratio of MCC was below 40%. Therefore, keep a ratio of 40%
etodolac, 40% MCC, and a total 20% proportion of CMS-Na
and lactose unchanged, pellets with 10% lactose and 10%
CMS-Na (P1), pellets with 12% lactose and 8% CMS-Na
(P2), and pellets with 15% lactose and 5% CMS-Na (P3)
were tested in this study. From Fig. 2, P1 reached nearly 90%
drug release within the shortest time of 15 min, while P2 of
30 min, and P3 of 45 min. P1 had the fastest drug release
among the three. Pulsatile drug release required in the
treatment was expected in this study, therefore, 10% lactose
and 10% CMS-Na were selected as a proper proportion.

Effect of Drug Content
The forming and releasing of pellets were also subjected

to drug content. Keep the proportion of MCC, CMS-Na, and
lactose unchanged, 30, 40, and 50% (w/w) drug content were

Table III. The Results of Swelling Degree with Different
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Fig. 4. Effects of the coating level of swelling layer on release
behavior of etodolac pellets without EC

designed to produce the pellet cores. From Table II and Fig.
3, we elucidated that, with the increasing ratio of etodolac,
the drug release slowed down. The critical angle was similar
between 30 and 40% drug content pellets, and had a slight
increase of 50% drug content. The smaller critical angle was,
the better the roundness. The yield of the pellets was also
similar between 30 and 40% drug content pellets, but it was
difficult to form ground and smooth pellets when the drug
content reached 50%, along with more challenges in its
preparation process. However, take the clinical dosage into
account, a higher drug loading of 40% etodolac pellets, whose
yield and roundness was no better than 30% etodolac-loaded
pellets, but still reasonable and acceptable, was selected as an
appropriate dose.

Coating of the Pellets

Both types and thickness of coating layer had significant
effect on the release of drugs. Since it is difficult to measure the
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Disintegrants
Disintegrant Swelling degree
CMS-Na 13.6
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Fig. 5. Effects of the coating level of swelling layer on release
behavior of etodolac pellets with different coating level of EC
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Fig. 6. Effects of different levels of EC on release behavior of
etodolac pellets

thickness of coated film directly, an indirect method (39)based
on the percentage of weight gain was employed in this study.

oy(%) = (WS—WC)/Wc % 100%
0e(%) = (Wfst)/Ws x 100%

Where wg (%) is percentage of swelling layer weight gain, w. (%)
is percentage of controlled layer weight gain, W_ is the weight of
the core, W is the weight of pellets after coated with swelling
layer, W is the final weight after coating controlled layer.

Types and Weight Gain of Swelling Layer

Materials with a rapid expansion after water absorption
were qualified to be used as the swelling layer. As a
consequence of the expansion, the outer film would have a
sudden burst, and then followed immediate drug release. The
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Fig. 7. Effects of palsticizers on release behavior of etodolac pellets
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Table IV. The Results of Full Factors Test

Formulation A(CCNa) (%) B(EC) (%) Index(h)
Tlag Tr

F1 25 7 3.68 3.75
F2 30 7 327 3.31
F3 35 7 3.18 3.06
F4 40 7 3.08 2.76
F5 25 8 4.73 4.68
Fo 30 8 4.42 3.87
F7 35 8 4.02 3.41
F8 40 8 3.86 332
F9 25 9 6.43 5.78
F10 30 9 521 5.37
F11 35 9 491 4.85
F12 40 9 4.18 426

swelling degree was an index to reflect the swelling property
of the disintegrants and was calculated as follows (40):

0=Vi/Vy

Where Q is swelling degree, V) is drying volume of 1.0 g
disintegrants, V, is the hydration volume of the disintegrants
after immersed into the water for 48 h.

CMS-Na, CC-Na, L-HPC, and cross-linking PVP were
investigated in this study. From Table III, we found that CMS-
Na had a swelling degree of 13.6, which meant the volume
became 13.6 times of the original volume after water absorption,
and then followed by CC-Na, L-HPC, and cross-linking PVP.
However, the viscosity of CMS-Na coating solution made it
more difficult in atomizing and caused pellets adhesion as well.
In contrast, CC-Na had a high efficiency in coating process due
to its fine powder properties, and does not easily plug the spray
gun. Therefore, CC-Na was identified as the best choice for the
rupturing release polymer membrane. These results were in
good agreement with results from other studies, where CC-Na
had a superior effectiveness as the swelling layer when
compared with other materials (23,41).
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Fig. 8. Release profile for the three batches of time-controlled
release etodolac pellets
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Table V. The Micromeritics Properties and The Yield of Etodolac Pellets

Batch no. Critical angle (degree) Bulk density (g/ml) Tapped density (g/mL) CI (%) HR Fr (%) Yield (%)
1 24.1 0.791 0.888 10.9 1.12 0.7 69.5
2 20.8 0.797 0.896 11.0 1.12 0.6 74.5
3 22.6 0.761 0.838 9.1 1.10 0.7 71.3

HPMC ES was used as the binder to achieve a better
adhesion effect of the coating solutions. First, we explored the
effect of the coating level of swelling layer on drug release without
the EC layer. Twenty, 30, and 40% coating weight of swelling
layer were tested; Fig. 4 conveyed a message that the release of
drug decreased slightly with the increase of the swelling layer, so it
could be considered that the swelling layer had no effect on the
release of immediate-release pellets. Next, we explored the effect
of the coating level of swelling layer with different coating level of
EC. Figure 5 manifested that, in the case of 8% weight gain of
controlled layer, swelling layer increased by 20%, the drug release
was slow, and the release rate of 12 h was only 60%; when
swelling layer increased by 25%, drug release increased signifi-
cantly. However, with continously increasing of the thickness (30,
40%), neither lag time nor release rate had evident changes. It
was illustrated that, with the thickening of swelling layer, the time
lag was reduced and the release rate increased, but when it
increased to a certain degree, the changes were not obvious
anymore. This can be explained by swelling pressure. The
swelling layer needs to reach a certain thickness, only to this
degree can it absorb enough moisture to meet and surpass the
swelling pressure, so as to cause the rupture of the outer film.
However, excessively increasing might affect the release behavior,
and the extra weight was meaningless at this time.

Types and Weight Gain of Controlled Layer

EC, cellulose acetate (CA), and polyacrylic resin were
widely used as coating films in controlled release (37). Differ
from cellulose, polyacrylic resin had a better ductility, which
made the film robust and not break easily. Consequently, it was
more suitable for time-delayed preparations. CA and EC were
two kinds of cellulose materials. Compared with EC, CA was
slightly higher in intensity. Film formed by CA was more stable
and tougher, which would not expand to a large extent in

contacting with solutions. EC was a kind of water-insoluble
polymer, which also had good performance in coating process
(42). Tts extensibility was relatively weak and more easily fracture
among the three. Allowing for time-controlled release mecha-
nism, EC was a better material for the controlled release layer.

EC, the earliest material used in the process of
controlled-release polymeric membranes, had good film-
forming properties that enable flexible coatings to be
produced (43). EC used as coating material was usually
dispersed in organic dispersion. Additionally, Aquacoat and
Surelease were two currently listed ethyl cellulose water
dispersion product. It was reported that EC organic disper-
sion and Surelease were not affected by pH in vivo (44-47).
However, Surelease coating process was hard to control and
Aquacoat needed to be extra sufficient heated before the
acid-alkali medium had no effect on it (48,49). Moreover, the
water permeability of pure EC was very low, and long-time
heat treatment was uneconomic. Therefore, 80% ethanol was
selected as the dissolvant in this study after trial and error.

As declared in Fig. 6, with the progressively increasing
(6, 8, 10%) of EC layer, drug release decreased and lag time
delayed. Eight percent EC was found to provide the best
release characteristics in terms of appropriate lag time and
drug release profile.

Types and Amounts of Plasticizers

TEC equivalent to 10, 15% (w/w) of the solid content
and diethyl phthalate (DEP) equivalent to 10% (w/w) of the
solid content were applied for plasticizers selection in this
study. The results of Fig. 7 revealed that increasing TEC
content (from 10 to 15%) reduced the release rate and
extended lag time as a result. This was mainly because the
plasticizer contributed to enhancing the tensile strength and
ductility of EC film, which made it difficult to break down

Fig. 9. Scaning electroscope photographof time-controlled release etodolac pellets
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Fig. 10. Mean plasma concentration of etodolac after oral adminis-
tration of test pellets and reference pellets

(50). Compared with DEP, the hydrophilic property of TEC
gave an approach to improving the release behavior. At the
same time, the quality of controlled film needed to be taken
into account so as not to be too fragile, TEC equivalent to
10% of the solid content was opted as a proper amount.

Formulation Optimization

Two important factors including the weight gain of
swelling layer (A) and controlled layer (B) were selected in
order to find the best prescription. Based on the single factor
investigations above, 25, 30, 35, and 40% weight gain were
selected as factor levels of A, 7, 8, and 9% weight gain were
selected as factor levels of B. In the same circumstances of
other variable parameters, the comprehensive full factors
experiment was designed to optimize the prescription, with
lag time (7j,,) and drug release time (7;) selected as the
evaluation index. The details were shown in Table IV.

It was reported that drug release at 2 a.m. was more
effective than other times, and more effective in controlling
morning stiffness and pain (51). In theory, it takes nearly 4 h
between taking the medicine from bedtime to two o’clock in the
morning, so formula with a 4 h delay was considered as the ideal
preparation. The result in Table IV indicated that, F1-F4 had
less lag time than 4 h, while F5, F6, F9-F11 had longer lag time.
F7, F8, and F12 had a time lag close to 4 h and there was no

Table VI. The Pharmacokinetic Parameters of Reference Capsule
and Test Pellets After Single Oral Administration in Beagle Dogs

(n=0)

Parameters Units Reference Test
AUC 0. mg/L*h 71.451 74.450
AUC g0 mg/L*h 74.763 76.878
K, ht 0.684 0.475
tin h 5.989 4.059
Thag h 0.291 3.295
Tmax h 1 .5 5.7
Cax mg/L 20.23 18.46

Zhang et al.

Table VII. ANOVA Analysis of In(AUCy...)

Source df SS MS F o =0.05
Individual 5 0.423 0.114 7.49 Fo.05(5.4) = 6.26
Period 1 0.030 0.030 0.27 Foosa4) = 7.71
Formulation 1 0.018 0.018 0.16 Foosa4 =771
Error 0.0452 0.113

Total 11 0.6472

significant difference in T,. From a productive perspective, in
comparision with F§ (CC-Na: EC=40:8, w/w) and F12 (CC-Na:
EC=40:9, w/iw), F7 (CC-Na: EC=35:8, w/w) had less weight gain
of coating layer, which was more economize in pharmatheutical
excipients and saved more production time. Therefore, pellets
with 35% swelling layer weight gain and 8% controlled layer
weight gain was considered as the optimal formula.

Characterization of the Pellets

The critical angle, bulk density, tapped density, CI, HR,
friability, and yield for the same three batches of etodolac
time-controlled release pellets were investigated in this study;
their particular properties were shown in Table V.

In Vitro Dissolution Test

Refer to the optimal formulation above, three batches of
the same etodolac time-controlled release pellets were
prepared for dissolution test. The release profiles for three
batches pellets were shown in Fig. 8. It was evident that the
pellets expressed time-lag characteristics and good reproduc-
ibility. The prepared pellets released the drug after a lag time
about 4 h and had a release time of 3.5 h.

Scanning Electron Microscopy

Scanning electron microscopy showed the surface and
cross-section structure of the coated pellets. From Fig. 9, we
could see the pellets were spherical and intact in shape; the outer
surface of the coated pellets was smooth and continuous.
However, the cross-section view indicated that the layers could
not be distinguished from the cores, and the boundary between
the two layers was not obvious. This was mainly because of the
migration of water during the process of drying.

In Vivo Pharmacokinetics Studies

Pharmacokinetic Data Analysis
Figure 10 illustrated the mean etodolac concentration and

time curve after single-dose administration in beagle dogs
(n = 6). Both the reference and the test pellets were fit to one-

Table VIII. Two One-Sided Test for AUC,._.,

Statistical parameters Values Ti-0.052 90% confidence
T, 3.533 2.132 89.7% ~ 117.2%
T, 2.75
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Table IX. Drug Release of Etodolac Test Pellets In Vitro and In Vivo

T(h) 4 5 6 8 10
Ft (%) 7.77 25.92 42.82 85.54 94.85
Fa (%) 3.85 12.08 31.28 61.28 75.33

compartment models according to AIC value and R?. The main
pharmacokinetic parameters were summarized in Table V1.

As learned from Table VI, the T, of the test pellets and
the reference were 3.259 and 0.291 h, and the T,,,x of the test
pellets and the reference were 5.7 and 1.5 h. Obviously, the
test pellets had a time lag and longer mean residence time
compared with the reference, which illustrated that the drug
could release before dawn after taking at bedtime and reach
its peak concentration in the morning, so as to meet the
treatment demand of morning stiffness (MS).

The relative bioavailability of etodolac compared with
the reference was 96.90%, which was calculated using the
following equation:

F(%) = AUCT/AUCR % 100%

Bioequivalency Analysis

The area under the blood concentration curve of the test
preparation and reference preparation was analyzed in
Table VII. ANOVA analysis demonstrated that there was
no significant difference between the test and reference
pellets in AUCy._,, The result of two one-sided ¢ tests and
(1-20) confidence interval analysis was showed in Table VIII
Ty > Ti00s2, T2 > Ti00sn, the test preparation was
bioequivalent to the reference preparation, and its 90%
confidence interval was from 89.7 to 117.2%.

In Vitro-In Vivo Correlations Analysis

The regression equation was F, = 0.8142Ft-5.0711, and a
correlation coefficient r of 0.994 suggested a good linear
regression relationship between the percent in vitro release
and in vivo absorption. The high correlations indicated that
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Fig. 11. The profile of IVIVC for etodolac test pellets

the drug absorption in the physiological conditions could be
illustrated by the in vitro release test under the current
conditions. The regression equation and coefficient of corre-
lation between percent dissolved and percent absorbed were
summarized in Table IX and Fig. 11.

CONCLUSION

The addition of CMS-Na, which acted as the disintegrants,
together with appropriate proportion of lactose and etodolac,
has a considerable effect on the formation of pellets made by the
process of extrusion-spheronization. Coated in a fluid bed, CC-
Na was used as swelling layer and EC as controlled layer. The
release profiles in vitro showed the pellets had a lag time about
4 h and release time about 3.5 h, which basically achieved the
expected goal. Pharmacokinetic studies in beagle dogs indicated
that the test preparation had better time-lag characteristics and
longer mean residence time compared with commercial avail-
able capsules. The two preparations are bioequivalent, the
relative bioavailability of the test pellets was 96.90% calculated
according to AUCy,. IVIVC model exhibited a good linear
regression relationship. Based on these results, it is evident that
time-controlled release etodolac pellets were likely to be a more
suitable formulation in treating with morning stiffness of
rheumatic arthritis disease.
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