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Speeding Up Formulation Development
QbD principles and strategic thinking can reduce the time required to optimize
formulation.
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To help pharmaceutical and biotech companies improve their operations, FDA has
been promoting the use of quality by design (QbD) (1, 2). Much has been written
about the QbD concept of a “design space” from a manufacturing process perspective.
Little has been published, however, about using QbD in formulation development,
including the development of formulation design spaces. 

Formulation studies typically involve the optimization of multiple ingredients including
the API, lubricants, binders, and disintegrants. Such optimization is a difficult
challenge when a large number of components are involved, which is typically the
case. 

An additional challenge is that, in many formulations, the amounts of components in
the formulation must add up to 100% or some fixed amount. A pharmaceutical
formulation, for example, might consist of: 15% API, 35% lactose, 45%
microcrystalline cellulose (MCC), 4% Starch, and 1% magnesium stearate. The
percentages of the ingredients add up to 100%; thus, when levels of one or more
components are changed (i.e., increased or decreased), the percentages of one or
more of the remaining components must be changed (i.e., decreased or increased by
a corresponding amount). 

The statistical design-of-experiments approach, DoE, which is at the core of QbD, has
the flexibility to deal with multiple components that involve constraints of many
different types. In the statistical approach, a series of formulations is created and
tested in a planned sequence. The levels of the candidate components are varied in a
blending design and the performance of the formulations is measured. A model is fit to
the data and critical components, and then blending characteristics are identified. 

Response surface contours are examined graphically and analytically to determine the
design space, the region of the best values of the response that meet specifications.
Additional confirmatory formulations are typically tested to verify the model predictions.
The statistical approach has many important benefits, as discussed by Montgomery
(3), Snee and Hoerl (4), and many others. As a result, formulation understanding is
greatly increased as well as the probability of successful formulation development (4-
7). This article discusses some of the issues involved, and outlines a strategy for
dealing with them. To clarify abbreviations in the text, MCC refers to Avicel PH105; CP
is Hiviswako 104; and PVP is Providone K90.

Thinking strategically

Use of DoE speeds up formulation development, but more is needed and more is
possible if one thinks strategically about formulation development. 

Over the years, it has been recognized that experimentation is more effective when it
is approached with a strategy in mind. To be effective, any strategy must recognize
that the design, or sequence of designs, should match the experimental environment;
that experimentation is sequential; and that the DoE tools must be embedded in the
strategy and linked and sequenced to guide the experimenter. 

This experience leads to the following principles, which can enhance experimental
strategies:

Plan ahead; define the series of experiments needed to satisfy the objective of
the program.
At the beginning, include (or at least consider) all factors (Xs) that may
possibly be important. Recall the Pareto effect, and the fact that most of the
variation will be caused by a small subset of the factors so that, as one moves
through the experimentation, the important factors will be discovered and
tested further in later experiments.
Don’t spend all resources on a single experiment: an issue is rarely resolved in
a single experiment.

A strategy that uses these principles was developed at DuPont in the 1960s, and
offered in public workshops beginning in the 1970s. In the case of formulation, this
strategy identifies two experimental environments: screening and optimization. The
objective of each of the phases and the designs used is summarized in Table I.
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Briefly stated, the screening phase explores the effects of a large number of
ingredients (components) with the objective of identifying a smaller number of
components to study further in optimization experiments. Additional screening
experiments involving additional factors may be needed when the results of the initial
screening experiments are not promising. On several occasions, the screening
experiment solves the problem.



Predictive model development

In the optimization phase, a predictive model is developed for the system that can be
used to find useful operating conditions using response surface contour plots and
perhaps mathematical optimization. The result is the design space.

The end result of each of these sequences is a completed project. There is no
guarantee of success in a given instance, only knowledge that the DoE strategy will
“raise your batting average” (8). The strategy used depends on the experimental
environment, which includes the objectives of the experimental program, the nature of
the components (Xs) and responses (Ys), resources available, quality of the
information to be developed, and the theory available to guide the experiment design
and analysis. A careful diagnosis of the experimental environment along these lines
can have a major effect on the success of the experimental program.

Martinello et al. (9) presented a pharmaceutical tablet study that investigated the
formulation involving the compound paracetamol, which was known to have poor
flowability (a measure of  how well the materials flow through the tableting equipment)
and compressibility properties. The study involved seven ingredients, varied over the
ranges that are shown in Table II. 
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Nine responses were measured. The focus of the following discussion will be for
illustrative purposes, the repose angle response (Table III). A 19-blend extreme
vertices design shown in Table III was used to design the formulations to be tested.
This design was selected using the D-Optimality criterion. As in any screening
experiment, it is necessary to know what components are most important as
measured by their effect (positive or negative) on the response. This information will
enable one to answer the following questions:

Can we select a formulation based on the results of this particular experiment?
Is additional experimentation needed? If so, which components should be the
focus of future experimentation?
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It is not unusual for a screening experiment to provide the information needed to
choose a desirable formulation. Such was the case in this particular study. If additional
experimentation is needed, the screening experiment results provide a firm basis for
designing the optimization experiment. In this case, a seven-term linear blending
model of the following form was developed (Equation 1). 

Y = b1X1 + b2X2 + b3X3 + b4x4 + b5x5 + b6X6 + b7X7  

[Eq. 1]

where Y represents the response of interest, in this case Y=Repose Angle; X1, X2 ….
X7 represent the levels of the components, and the bs are regression coefficients
associated with the Xs. 

Martinello et al. (9) developed equations such as Equation 1 for each of the
responses and used the equations to develop an optimal formulation, which, when
tested, produced measured responses that were very close to those predicted by the
linear blending model. Thus, in this case, additional experimentation was not needed.

Calculating component effects

The principal output of a screening experiment is the component effects. The
component effects shown in Table IV for the repose angle response were calculated
using methods proposed by Cox (10). The linear blending model defined by Equation
1 fit the data with an adjusted R-Square value of 82%, a respectable value for a
screening experiment. The overall model gave a statistically significant fit to the data
(p=0.000).

In Table IV, note that the Microcel and Aerosil have a significant effect on the tablet
repose angle. The Aerosil effect is negative and much larger than the Microcel effect,
which is positive. These effects are seen in the component prediction profile plots in
Figure 1. Note that in Figure 1 the effect lines for all the components except Microcel
and Aerosil have a very small slope, indicating no effect.

Figure 1: Pharmaceutical tablet compactability study design: plots of predicted repose angle-
versus-component levels.

Interpreting component effects

When evaluating component effects to better understand formulation systems, the
following are recommended:

Evaluate the component effects using the Cox effect directions to assess the
nature and magnitude of the component effects as shown in Figure 1 and
Table IV.
Study the component effects to identify components that may have equal
values indicating similar blending behavior.
Assess whether similar blending of these components is supported by subject-
matter science and business knowledge. Components with effects that are not
statistically significant identify components that have no effect. The response
to finding components that have no effect will depend on the objectives of the
experiment. Options include setting the component with no effect at any
desirable level within the range studied. If zero is at or near the lower end of
the range, one can consider removing the component from the formulation. In
all cases, the selected action should take into account subject-matter science
and business knowledge (8).



A formulation optimization case study

Hirata et al. (11) present an optimization case study focused on the development of a
three-component sustained release tablet of chlorpheniramine maleate. The objective
of the study was to find a formulation with a release rate >30 units. The ranges of the
three components shown in Table V suggests the use of an extreme vertices
response surface design. 

These component ranges produce an experimental region that has six vertices
(Figure 2). The region is irregular, and there are two pairs of vertices that are close
together (points 2 and 3 and 4 and 5, Table IV). Figure 2 shows the six vertices, the
six-edge centroids, and the overall centroid, as well as the response surface contours
that will be discussed later.

Figure 2: Sustained-release tablet
experimental region defined by
component constraints and response
surface contours.
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In a formulations experiment design made up of the six vertices, the six-edge
centroids (including the two short edges) and the overall centroid, which was tested
three times for a total of 15 blends, were evaluated. The design and release rate data
are shown in Table VI. In this table, five of the design blends (5, 6, 10, 11, 12) have
release rates > 30. This provides the scientist’s assurance that the objectives of the
study will be met, even before any statistical modeling and analysis are done.

Plots of predicted release rate versus component levels for each component are
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shown in Figure 3 (sometimes referred as the prediction profile). In this figure, CP has
a negative effect while MCC and PVP have positive effects. The component linear
effects as measured along the Cox axes show that the CP effect (-16.5 units) is
dominant as compared to the MCC and PVP effects which are 7.9 and 9.5 units,
respectively. In formulation optimization studies, the quadratic model is the model of
choice, particularly at the beginning of the analysis process. The three-component
quadratic blending model of the form is shown in Equation 2. 

Y = b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 + b23X2X3

[Eq.  2]

Where Y represents the response of interest. In this study case, Y=Release Rate; X1,
X2, and X3 represent the levels of the components, and bs are model regression
coefficients.

Figure 3: Predicted release-rate-versus-component levels plots along Cox axes. MCC =
Avicel PH 105; MCC is Avicel PH 105; CP is Hiviswako 104;  PVP is Providone K90.

Evaluating fit 

The fit of the quadratic model (Equation 2) gives a good fit to the data as judged by
the adjusted R-square value of 94%. As expected, there was some significant
curvilinear blending involving MCC and CP and PVP and CP. 

The centroid blend was evaluated three times. These replicate blends enable us to
test the lack-of-fit of the model. This test was not significant (p=0.638), providing
further indication of the adequacy of the fit of the quadratic model. 

The next step is to construct the response surface contours to identify the formulations
that will produce release rates > 30 units. In Figure 2, over the design space, levels of
CP < approximately 0.25 will produce release rates > 30. Figure 2 shows contours for
release rates of 18, 20, 24, 28, and 32; associated with decreasing CP moving left to
right. The curved contour lines result from the curvilinear blending noted above.
Components that blend linearly produce straight line contours. The fit of the model
was checked by running two confirmation experiments (Table II, blends 16 and 17),
which produced “observed” and “predicted” release rates of 32.7 vs 30.0 and 20.7 vs
20.0, respectively. These accurate predictions added further evidence of the adequacy
of the model.



The right data in the right quantity at the right time

The strategy of formulation development described in this article enables formulation
scientists to speed up formulation development by getting the right data in the right
amount and the right time. In the process, the formulation scientist’s “batting average”
is raised (10). 

Proven techniques, and available software

The strategy and methodology outlined here have been used successfully, and tested
over time. They work, and there is software available to ease the computational
burden, as well as to create graphics that aid in analyzing the data and visualizating
the results. In short, the approach seems worthy of consideration by formulation
scientists. 
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