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ABSTRACT

Computational modelling has completely redefined the experimentation process in many industries,
allowing large sets of design concepts to be tested quickly and cheaply very early in the innovation
process. Harnessing the power of computational modelling for protein drug formulation has numerous,
currently unrealized, benefits. This project aims to be the first step in the development of a high
throughput predictive computational model to screen for excipients that would decrease protein
aggregation in solution and thus increase its stability and enable clinical effectiveness.

Protein drug formulation currently relies heavily on empirical evidence from wet-lab experiments and
personal experience. During the biologic drug development process, proteins that target specific disease
pathways are identified, developed, isolated, and purified. Scientists then conduct a series of wet-lab
experiments to identify the optimal formulation that will allow the protein to be used as a drug therapy.
A critical part of formulation development is the identification of inactive ingredients called excipients
that perform various important functions including prevention of protein aggregation. Despite their
critical role in enabling proteins to be effective therapies, very little is understood about excipient-
protein interaction. Furthermore, often a limited set of compounds are tested for their use as excipients
since wet-lab experiments are expensive and time consuming.

This project accomplishes the following goals:
e Identification of databases of compounds that could be used as excipients in biologic formulation
* Development of a high throughput method to computationally model a target protein and 247

potential excipients
e Evaluation of potential relationship between computational output and wet-lab results based on

experimentation with 32 of the 247 excipients
e Recommendations on next steps that include feedback on types of proteins and excipients to be

tested for the validation of the method developed in this project
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1. Background on Protein Therapeutics
1.1 Industry Overview

The treatment options available to patients can be broadly divided in two major categories:
surgical intervention and pharmacological intervention. Historically, pharmacological
intervention has relied on small molecules, which typically have a low molecular weight (< 900
Daltons) and can usually be delivered orally as a pill. Furthermore, these molecules are derived
through chemical reactions and can be manufactured at a commercial scale without reliance on
living systems. Small molecules like statins and NSAIDs can have high clinical efficacy and are
still used as the first line of treatment in many diseases.

However, advancements in science and engineering over the last century have led to the
development of more targeted and effective therapies called large molecules or biologics.
Unlike small molecules, biologics have a high molecular weight and are often delivered through
intravenous or subcutaneous methods. Biologics are typically not designed for oral delivery
both because of their size (e.g., IgG antibodies are in the order of 150 kilo Daltons) and because
they will be rendered ineffective after they are metabolized in the digestive system. Another
important difference is that they are produced by living systems that range from bacteria and
yeast cells to mammalian cells. The type of living system that is used for manufacturing
depends on the protein itself (e.g., if the protein has a specific glycosylation pattern that can
only be produced by certain types of cells) and the cost-effectiveness of the living system at a
commercial scale. There are many different categories of biologics including protein therapy,
cell therapy, gene therapy, vaccines, and tissue engineering. Of these, protein therapeutics are
the most prevalent, with over 100 FDA approved drugs in the market (Leader, 2008).

Protein therapeutics have changed the treatment paradigm for many serious diseases since the
approval of the first biologic, recombinant human insulin, in 1982 (Altman, 1982). Deeper
understanding of disease pathophysiology has led to discoveries about the involvement of
various proteins in the disease pathways. Often either mutations or variations in concentrations
of key proteins lead to chronic, debilitating, and degenerative disorders. This realization has led
scientists to identify and develop proteins to target those disease pathways. Although some
protein therapeutics are endogenously produced and isolated from humans or other mammals,
many protein therapeutics depend on recombinant DNA technology.

Once scientists know the amino acid sequence of a protein that plays a role in a disease
pathway, they can use recombinant DNA technology to modify the protein and insert the DNA
sequence in host cells. These host cells grow and replicate in large bioreactors where they act
as miniature "factories" that produce the target protein. In a series of complex steps, these
proteins are then isolated from the cells, purified, and formulated to be used as an injectable or
infusible drug.



Protein therapeutics offer numerous clinical benefits that were previously unrealized with small
molecules. Because they are targeted to particular disease pathways (e.g., a specific receptor
on a cancerous cell), often they are more efficacious and have fewer side effects. Furthermore,
they are less likely to trigger an immune response since they are usually based on proteins
found endogenously in the human body. Lastly, the use of recombinant DNA technology allows
scientists to engineer the protein for enhanced functionality and stability.

However, there are still important drawbacks with protein therapeutics for patients. While
many protein therapeutics are disease modifying agents, few actually lead to cure, leaving large
gaps in care. The intravenous or subcutaneous delivery of protein therapeutics negatively
impacts patients' quality of life since they often either have to drive to the physician's office or
an outpatient setting to receive treatment or inject themselves at home. Protein therapeutics,
are significantly more expensive than small molecules. One study indicates that despite only 2%
of the population receiving biologics, over 40% of prescription drug spend in the US is allocated
to it (Glover 2015). These concerns regarding drug pricing continue to grow in importance as
people's average lifespan increases and many protein therapeutics are used as chronic
treatments.

Biotechnology companies and biopharmaceutical companies also have some business
incentives to focus on protein therapeutics. Although both small molecules and protein
therapeutics have to follow the drug approval process shown in Figure 1, protein therapeutics
typically gain approval faster (Leader, 2008). In addition, 13%-14% of protein therapeutics in
phase 1 are likely to gain approval compared to only 7.6% of small molecules in phase 1 (Hay,
2014). Although they are in general more difficult to manufacture than small molecules,
recombinant DNA technology allows for fast, scalable, and reliable commercial production that
is not available with non-recombinant proteins (Leader, 2008). Biologics typically also have
longer exclusivity rights and less competition from biosimilars, compared to branded small
molecules and their generic counterparts, because of the relative complexity of developing and
manufacturing them and the difficultly associated with developing identical replication for
biosimilars. This, along with the clinical benefits that it offers, enables biotechnology companies
to price biologics on average 22 times more than small molecules (Richardson, 2013).

. DDeeoe4. Phs . Reie Metn 1 .DuLblln
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Figure 1: Overview of the FDA Drug Approval Process

("Drug Approval Process," 2016)
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However, there are also important business risks that companies take by investing in protein
therapeutics. Despite having a higher likelihood of getting approval compared to small
molecules, there is also only a relatively low rate of successful progression to consecutive
stages of development, as shown in Figure 2. Furthermore, a report by Tufts Center for the
Study of Drug Development indicates that the cost to develop a new drug is approximately $2.6
billion, a 145% increase from approximately $1B in its 2003 report (Peters, 2014). While this is
arguably offset by the high prices that biotechnology companies charge for protein
therapeutics, there are increasing cost pressures and rising threat of biosimilars that are likely
to affect their profit margin in the coming years.

I A at n Likelihod of

30% 60-70% 35-38% j-60-69% _-86-91%j

Figure 2: Rate of Success Between Each Stage of Development for Biologics

(Hay, 2014; Bains, 2004)

Despite their business risks and clinical drawbacks, protein therapeutics will continue to play an
important role in treating serious diseases given their ability to be targeted and efficacious,
with fewer adverse events. Many current protein therapeutics are based on monoclonal
antibodies. However, in the coming years, new modalities of protein therapeutics will continue
to be introduced including bispecific T-cell engagers (BiTEs), protein-drug conjugates, and
engineered zymogens (Tobin, 2014). Through the use of protein engineering, these new
modalities are expected to offer better treatment options for patients.

1.2 Amgen's Role

Amgen is one of the world's leading independent biotechnology companies with a market cap
of approximately $135 billion ("Amgen Inc.", 2017). It was founded in 1980 as Applied Molecule
Genetics Inc., by venture capitalist, William Bowes, and a staff of three in Thousand Oaks,
California ("The Amgen Story", 2015). It launched its first drug, Epogen, in 1989, just 7 years
after the approval of recombinant human insulin in 1982, and its second drug, Neupogen, in
1992("The Amgen Story", 2015). Both Epogen and Neupogen are blockbuster biologics that are
indicated for treatment of anemia in patients with Chronic Kidney Disease (CKD) and
neutropenia in patients receiving chemotherapy, respectively ("The Amgen Story", 2015).
Although sales for both biologics have been declining over the last couple years due to
competition, Epogen has made over $40 billion in the last 28 years and Neupogen has made
approximately $1 billion to $1.5 billion each year over the last few years (Pollack, 2012;
"Amgen's 2015 Revenues", 2016).
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Amgen currently has 20,000 employees and approximately $21.7 billion in total global revenues
("About Amgen", 2017). It has operations and/or affiliated subsidiaries in 52 countries and
serves millions of patients in over 100 countries ("About Amgen", 2017). Starting with Epogen
in 1989, Amgen currently has a total of 15 drugs in the market ("About Amgen", 2017). Of
these, 12 are biologic and more specifically 10 of these are protein therapeutics. A more
detailed portfolio of Amgen's currently marketed drugs is shown in Table 1.

Table 1: List of Amgen's Approved Drugs As of January 2017

EPOGEN
(EPOTIN LFA)

NEU DOCE
(FILORASTIM>

Aranesp
(darbepoetin alfa)

W Neulasta
(pegfilgrastim)

Sensipar

Vectibix
(panitumumub)
N g iw Nb0ir

Nplate'
romiplostim

enosurawt

XGE VA
(denosumab)

Kyprclis.

JABLINCYTO
(bWinatufmmb) ',

1989

1991

1998

2001

2002

2004

2006

2008

2010

2010

2012

2014

Corlanor 2015
(ivabradine) 1rj e s

Nephrology

Hematology/
Oncology

Inflammation

Nephrology

Hematology /
Oncology

Bone Health

Hematology /
Oncology

Hematology /
O Hncology

Bone Health

Bone Health

Hematology /
Oncology

Hematology /
Oncology

cardiovascular

Biologic: Recombinant Protein

Biologic: Recombinant Protein

Biologic:
Protein

Recombinant Fusion

Biologic: Recombinant Protein

Biologic: Recombinant Protein
with PEG
Small Molecule

Biologic: Recombinant IgG2

Biologic: Peptide fusion protein

I Biologic: Recombinant IgG2

Biologic: Recombinant IgG2

Small molecule

Biologic: BiTES

Small molecule
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2015 

2015 
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I Cardiovascular 
I 

i Biologic: Recombinant viral 
I 
' therapy 
I 

I 
I 
I 

i Biologic: lgG2 

i 

("Products", 2017; "Amgen's 2015 Revenues", 2016; "Aranesp", 2016; "Blincyto", 2016; 
"Corlanor", 2017; "Enbrel", 2016; "Epogen", 2012; "lmlygic", 2015; "Krypolis", 2016; 
"Neulasta", 2016; "Neupogen", 2016; "NPLATE", 2016; "Products", 2017; "Prolia", 2017; 
"Repatha", 2016; "Sensipar", 2014; 'Vectibix", 2015; "Xgeva", 2016.) 

In addition to the 15 drugs that have already been launched, Amgen also has 43 drugs in 
various stages of development ("Pipeline" 2016). Of these, 15 are in Phase I, 7 are in Phase II, 
and 12 are in Phase Ill ("Pipeline" 2016). The remaining 9 molecules in development are 
biosimilars of blockbuster biologics currently in the market ("Pipeline" 2016). Approximately 10 
of the drugs in various stages of development are already approved Amgen biologics that are 
being explored in other indications ("Pipeline" 2016). A majority of these drugs are being 
developed for hematology/oncology, followed by inflammatory diseases, cardiovascular 
diseases, and neurological disorders ("Pipeline" 2016). Figure 3 depicts the 11 different 
modalities that make up the drugs in the pipeline ("Pipeline" 2016). Approximately 73% of the 
pipeline drugs are biologics (including the 9 biosimilars), 18% are small molecules, and 
remaining are unknown to the public ("Pipeline" 2016). While Amgen pursues a modality­
independent strategy towards drug development, the high proportion of its portfolio dedicated 
towards biologics emphasizes the importance of these molecules in the future of healthcare. 

Figure 3: Modalities of Drugs Considered by Amgen 

("The Shape of Drugs to Come", 2015) 
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Despite having a strong product portfolio and pipeline, Amgen faces numerous challenges in
the coming years. Interestingly, many of these challenges require the development of better
formulations. For example, some of its older drugs like Epogen, Neupogen, Enbrel, and Neulasta
are already facing or are expected to face competition from biosimilars as their patents expire
(Farooq 2016). In order to continue to maintain strong revenues from these older drugs, Amgen
must explore opportunities to enhance their benefits and their ability to deliver better care to
patients through careful lifecycle management. A strategy that is likely going to be very
important with these drugs is to improve their delivery methods to increase ease of use for
patients and doctors, improve quality of life for patients, and increase patient adherence and
compliance. But utilization of new delivery devices will often require the drug to be
reformulated to be compatible with the device. Another challenge Amgen faces is related to
the development of its biosimilar portfolio. However, given the uncertain regulatory pathway in
the US, Amgen faces numerous hurdles related to the launch of these drugs. One main concern
is that the protein patent often expires earlier than the formulation patent for the originator
drug. Thus Amgen may need a way to quickly develop new formulation for the biosimilar
protein that is also similar to the originator drug's formulation. Last, but not least, Amgen also
faces formulation challenges related to the new modalities of treatment (shown in Figure 3) it is
developing. In the past, many of its drugs were made up of monoclonal antibodies or
recombinant proteins that were often naturally stable and relatively easy to formulate.
However, some of the new modalities of drugs pose interesting formulation challenges and as a
result, Amgen may need better ways to determine optimal formulations faster.

1.3 Excipients in Protein Drug Development
1.3.1 Function of Excipients in Protein Therapies

Formulation development is an important step in the drug development process because it
allows the drug candidate to become an effective therapeutic at a commercial scale. After the
lead protein candidate has been identified through the process shown in Figure 4 below, it
enters the formulation development step. Once isolated from the cells, proteins often become
unstable since they no longer have the ecosystem of molecules present in the cells to stabilize
them. Even a protein that is less sensitive to external conditions, may face issues over the
course of the drug's shelf life. Stability issues include protein aggregation, chemical or thermal
degradation, and denaturation. These stability issues have the potential to not only lower the
bioavailability of the protein, but may render the protein ineffective or cause immunogenic
reactions in patients.

Hit Lead omun
Generation ~Optimization &Delomn

acenin Characterizationeopen

Figure 4: Stages of Pre-clinical Discovery and Development
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In addition to ensuring protein stability, scientists need to also consider other important factors
during formulation development. Solubility and viscosity of proteins may require alterations so
that clinically effective dosages of drugs can be delivered to patients. Formulation development
can also help ensure that biocompatibility factors like isotonicity are maintained. From a
business perspective, formulation development helps determine the shelf life for the drug. A
protein that might otherwise become unstable in a month, could get an extension of life by two
years, a common goal the industry aspires to, with the proper formulation. This allows biotech
companies to take advantage of the economies of scale related to large scale manufacturing.
Longer shelf life also results in cheaper drugs and more convenience for patients and
physicians. Another growing trend in the industry is the focus on developing new delivery
devices, which also require appropriate formulation changes. Biotech companies are motivated
to develop new devices since it offers competitive differentiation and can result in increased
patient adherence. The latter is a particularly important problem to tackle because patient
adherence rates are expected to be approximately 20% - 50% for biologics (Degli Esposti, 2014).
Delivery devices for Amgen's biologics vary from a multi-dose vial that can be used with a
regular syringe to prefilled syringe, auto-injectors, and on-body injectors. Amgen also recently
entered a licensing deal with Unilife for its wearable injectors ("Unilife and Amgen..." 2016).
However new delivery devices often also require new formulations that are compatible with
the specifications of the device. Formulation development is a critical part of the drug
development process given its role in stabilizing the protein, ensuring appropriate solubility,
viscosity, and isotonicity, helping lengthen the shelf life, and increasing compatibility with
various delivery devices.

Although the exact process of formulation development varies depending on the biotech
company, there are three primary stages to the process: pre-formulation, drug substance
stabilization, and final formulation. Pre-formulation is used to understand the physical and
biological properties of the protein candidate (Chang, 2002). These properties include
understanding the protein's structure, solubility and stability parameters, viscosity, ionic
strength, glycosylation, hydrophobicity, and self-association (Chang 2004). It is also helpful to
know in vitro and in vivo activity of the protein either from studies done in early stage research
or new studies. During pre-formulation, scientists also frequently establish the target pH and
temperature range and the protein's response to shear stress and freeze/thaw cycles. At this
stage, there is also a chance for formulation scientists to work with research scientists to
identify opportunities to modify the protein itself for increased stability and/or solubility.

Once these parameters are better understood through the pre-formulation assessment, the
next step is to identify a formulation that improves the drug substance stabilization. Drug
substance is a purified solution containing only the protein candidate. At this stage, numerous
possible tools can be used to optimize the stability including molecules called excipients,
buffers, and pH adjustments. Table 2 below identifies some common stability related problems
with the protein candidate, potential causes, and solutions.
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Table 2: Stability Issues with Protein Drug Candidates*

Non-covalent aggregation

Covalent aggregation

Deamidation
Cyclic imide
Cleavages

Oxidation

Surface denaturation,
adsorption

Solubility, structural changes,
heat, shear, surface,
denaturants, impurities

Disulfide scrambling, other
unknown mechanisms
pH < 5.0 or pH > 6.0
pH around 5
Protease impurity, other
unknown mechanisms
Active oxygen species, free
radicals, metals, light,
impurity
Low protein concentration,
specific affinity, protein
hydrophobicity

pH, ionic additives, amino
acids, surfactants, protein
concentration, raw material
purity
pH, inhibit non-covalent
aggregation
pH optimization
pH optimization
pH, product purity, inhibitors

Excipient purity, free-radical
scavenger, active oxygen
scavengers, methionine
Surfactants, protein
concentration, pH

(*Table from Chang, 2002)

Once protein stability, reproducibility, and manufacturing capabilities have been established,
the drug candidate is ready to be submitted for an IND application to gain approval for phase I
and phase 11 trials. However, simultaneously it is important to begin the final stage of
formulation development for phase Ill trials and commercial approval. While ensuring that
safety, efficacy, and stability of the protein are maintained, developing a commercial
formulation requires an understanding of the delivery device, clinical requirements (e.g.,
dosage), and expected transportation and storage conditions, especially given the patient- and
physician-constraints of certain indications and costs. Excipients are heavily relied on at this
point to change various properties of the protein solution including its solubility, viscosity,
concentration, and compatibility with the delivery device. At this stage, it may also be
important to revisit stability parameters to ensure that protein stability can be maintained over
the expected shelf-life of the drug. Numerous studies are conducted with time point
measurements over 1- 2 years to ensure that the final formulation meets efficacy, safety, and
delivery requirements. Regulatory approval for the final formulation is gained through the
results of these experiments and typically the phase Ill trial results.

As seen above, excipients play a critical role in formulation development. The FDA defines
excipients as "inactive ingredients" or "any component of a drug product other than an active
ingredient." So these include macromolecule compounds like albumin to small molecules like
amino acids, carbohydrates, lipids, salts, polyols, antioxidants and polymers. Excipients serve
various functions in biologic formulation development. They can impact stability and solubility
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by maintaining specific pH ranges as buffering agents or interacting directly with the proteins
through non-covalent bonding (e.g., hydrogen bonds, van der Waals interactions, hydrophobic
interactions). They may help provide isotonicity to help improve bio-compatibility during
injection. They can also act as surfactants that reduce or prevent aggregation and surface
adsorption. Excipients may also help to control protein oxidation, act as cofactors, help
maintain protein conformation, and influence the viscosity. Ultimately they serve as the tool kit
that allows for the formulation of a protein drug candidate into a stable drug that can typically
be delivered through subcutaneous or intravenous methods at the right concentration and
biocompatibility. They often serve to increase the bio-availability of the drug by helping to
maintain the protein's stability and conformation.

New excipients, defined as "inactive ingredients that are intentionally added to therapeutic and
diagnostic products, but that: (1) are not intended to exert therapeutic effects at the intended
dosage, although they may act to improve product delivery (e.g., enhance absorption or control
release of the drug substance; and (2) are not fully qualified by existing safety data with respect
to the currently proposed level of exposure, duration of exposure, or route of administration"

("Guidance for Industry" 2005). They are labelled as inactive ingredients by the FDA because
even though they serve to enhance the properties of the protein and/or the delivery device,
they are expected to have minimal to no impact on patient safety and should produce no off-
target effects. These strict regulations requiring extensive safety data for new excipients came
about after a disaster in the early 2 0 th century due to a new formulation of a drug called Elixir
Sulfanilamide. The pharmaceutical company added an excipient called diethylene glycol to
switch the drug from a pill to a liquid formulation (Ballentine, 1981). However, this excipient
was found later to be an antifreeze agent that resulted in the death of over 100 patients before
the FDA was able to recall it (Ballentine, 1981). Since then, the FDA has published the Federal
Food, Drug, and Cosmetic Act of 1938, the Guidance for Industry Nonclinical Studies for the
Safety Evaluation of Pharmaceutical Excipients (2005), and other documents to regulate and
provide guidance to pharmaceutical and biotech companies on the extensive toxicology and
safety data necessary for the approval of new excipients. Thus toxicology studies should be
done for new excipients during early stage clinical trials and patient safety data should be
collected by phase Ill trials. The FDA may require additional studies if the formulation is
changed after phase Ill trials. The one exception to these guidelines is if the excipients are
already approved by the FDA for a particular mode of delivery and listed in the FDA's Inactive
Ingredient Database. These excipients may be used for new drug formulations with the same
mode of delivery with potentially less extensive studies.

1.3.2 Current Methods for Selecting Excipients

Excipient selection occurs through two different methods. Some biotech companies and/or
contract research organizations (CROs) begin with platform formulations for different molecule
types. Platform formulations may specify a pH or a general pH range, the buffer, and a set of
excipients that have been shown to support certain protein types like monoclonal antibodies.
Some platform formulations may even specify development guidelines including types of
experiments to perform and time points to collect. The purpose of platform formulation is to
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reduce the time and cost required for formulation development, especially for a class of
molecules that are believed to behave similarly. This strategy is also often used to develop
formulations for first-in-human Phase I and Phase I trials and is refined for phase Ill and
commercial use. Any refinement to platform formulations rely heavily on personal experience
and expertise of the scientists developing the formulations and/or through the use of the trial-
and-error method.

Another approach that is commonly used with excipient selection, particularly for formulation
development of novel proteins, is design of experiments (DOE) (Hwang, 2005). If high-
throughput instruments and assays are available, DOE provides a systematic approach to
simultaneously test different combinations of excipients for formulation development. It also
allows for statistical analysis of the results to create design space to choose the optimal
combination of the variables tested. This is because DOE not only provides information on each
of the variables and the experimental outcome measured, but also the relationship between
the different variables. DOE also provides a method to identify the most critical variables for
formulation development, providing scientists with guidance on factors that require more
careful optimization. Although DOE is a promising approach, especially given the increasing use
of automation to perform high throughput experiments, some scientists may still take an
empirical approach based on past experiences and expertise.

Regardless of the approach taken to determine the excipients, there are some experiments that
are commonly performed to test their impact. A summary of these experiments used to test
protein stability are shown in Table 3 below. Although not all of these experiments are
conducted for each protein's formulation development, it is recommended to do a variety -
time and resources permitting - to gain more information regarding the excipient and protein
interaction. In addition, other experiments may be performed depending on the stage of
formulation development and the need of the protein. For example, especially during the third
stage of formulation development, scientists may run experiments to optimize viscosity,
solubility, and compatibility with the delivery device.
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Table 3: Analytical Approaches to Assess Impact of Excipients on Protein Stability Attributes*

Column
chromatography

Electrophoresis

Spectroscopy

Thermal Analysis

Light scattering/
turbidity

Other micro
characterization
methods

HPLC, FPLC, low pressure LC; size-
exclusion, reversed-phase, ion-
exchange, hydrophobic, affinity
columns, coupled with UV,
fluorescence, RI, and other analytical
instruments as detectors

SDS-PAGE, native PAGE, isoelectric
focusing, capillary electrophoresis
CD, fluorescence, FTIR, UV, Raman,
NMR
Differential scanning calorimetry,
thermogravimetric anlaysis,
thermomechanical analysis

Dynamic light scattering, other light
scattering devices, turbidity, particle
size determination, particle counter

Peptide mapping, peptide
sequencing, amino acid analysis,
mass spectrometry, other specific
analyses for individual reactive
groups

Most physical and chemical
degradations, excipient
impurities, leacheates

Degradations with changes in
size and/or charge
Structural changes, chemical
modifications of side groups
Protein structure, lyophilized
cake structure, powder
characterizations

Aggregation, precipitation,
molecular weight
determination

Identification of impurities
and chemical degradation,
analysis of complex proteins,
e.g., antibody and
glycoprotein

(*Table from Chang, 2002)

1.3.3 Areas of Opportunities

Given its important role in translating a research molecule into a commercial drug, the
formulation development process is fairly well defined in many biotech companies and CROs.
Whether it is a platform approach, design of experiments (DOE), trial-and-error, or a
combination, companies may have unique methods for formulation development. Typically,
formulation scientists are also given limited timeline and a limited set of resources to produce
formulations that meet certain thresholds for the different stages of the development process.
These requirements, in addition to the FDA regulations, are often from the product
management and commercial teams that set goals for development. It is not clear that the best
formulation, or even a close to best formulation is identified for protein drugs since scientists
are often working to meet the requirements with severe resources constraints. Thus there is
significant room for improvement of this process.
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First, an increased collaboration between the discovery research team team and the
formulation development team may allow for optimization of the protein structure to meet
formulation need. This could be a challenging process since scientists who are involved in
selecting the optimal drug candidate during the pre-clinical stages will have three main
considerations:

* Selecting a molecule that is likely to provide the most clinical benefits
* Ensuring that it can successfully and relatively easily be scaled-up for commercial scale

manufacturing
* Identifying a structure that has high stability and may be easy to manufacture

Thus far, the first two considerations often take priority since it has a direct impact on the
commercial success of the drug and scientists have been able to deliver formulations that meet
the requirements. However, as biotech companies explore new modalities of protein therapies
that provide new challenges for formulation, it may become even more critical to select protein
candidates from the discovery research stage that have shown to be more stable.

Second is that the existing methods take up significant resources and do not provide space for
continuous innovation with formulation development. The three approaches discussed in the
previous section naturally provide a limitation on the number of formulations that can be
tested and do not really provide an incentive to identify the optimal formulation. In particular,
with the platform formulation approach, even the addition of new knowledge to the process is
limited since the same platform is tested with potentially slight variations. Additionally, even
with time and resources constraints, all three of these approaches can be a burdensome
process because these are not set up to gain scientific insight into excipient-protein interaction.

The last is that improved communication and collaboration between the formulation
department and the manufacturing department may help efficiently deliver final formulations
that are also optimized for manufacturing capabilities. Although not a major issue at the
moment given that many protein therapies are monoclonal antibodies with shared properties,
this could become particularly important with new modalities. There are numerous benefits
that could be realized from increased communication between these groups, from
consideration of the cost of specific excipients at a commercial scale to understanding the
flexibility and the doable strict requirements for manufacturing department.
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2. Introduction to Project
2.1 Problem Statement

Formulation development is increasingly becoming a critical challenge in protein drug
development. There are in fact three industry trends that will only further amplify this in the
coming years:

1. New modalities of protein therapeutics that will likely require new formulation designs
2. Advancements in delivery devices that may require re-formulation of currently

approved protein therapeutics
3. Biosimilars may require new formulation if the formulation patent life for the originator

drug has not yet expired
It is important that advancements in formulation development match the advancements in
protein engineering and the changing formulation needs. Although the increased utilization of
high-throughput equipment has made it easier to experimentally test a larger set of
formulation designs, the process to discover new excipients and to screen them have not
changed notably over the last couple of decades. Scientists still primarily rely on platform
formulations, DOE, trial-and-error, and personal experience. Furthermore, the cost, resources,
and time required to develop new formulations, particularly for molecules for whom the
platform formulations do not work, are still high. Lastly, it is not clear that optimal formulations
are identified; rather it often seems like a formulation that sufficiently meets expectations is
developed given rapid turn around deadlines.

There are numerous types of formulation challenges associated with the three main trends
noted above. At the core is the ability to identify excipients that could perform various tasks
like reducing viscosity, increasing stability, increasing solubility. In particular, the need for
excipients that will reduce protein aggregation is likely going to increase in the coming years
due to the increased preference for liquid formulations across all three trends. The level of
protein aggregation is a marker of the protein's stability and is an important endpoint to track
during the various stages of the drug development process. High levels of aggregation can
result in a loss of clinical efficacy, changes in biodistribution of the drug, and potentially trigger
immunogenicity.

Protein aggregation is defined as the irreversible association between two or more protein
monomers to form dimers, trimers, or even macroscopic particles. There are numerous
processes that may lead to protein aggregation. It has been shown that aggregation is often the
result of association between protein monomers that are in non-native conformational state
(Wang 2010, Gokarn 2006). Typically, a small proportion of proteins are mis-folded, unfolded,
or denatured in equilibrium. This is related to the conformational stability of the protein and
may increase throughout the different processing steps including during the expression of
proteins in cells, purification, freeze/thaw, shaking and shearing, pressurization during
filtration, and initial formulation development (Wang 2010). The exposure of its hydrophobic
regions and the greater degree of flexibility it has enables the protein to aggregate more in its
non-native conformational state (Wang 2010, Gokarn 2006). Proteins may also aggregate due
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to changes in its structure and make-up after chemical degradation. Although less frequent,
protein aggregation may occur in its native state (Wang 2010). This could either be due to its
colloidal stability, resulting in association through electrostatic, hydrophobic, and van der Waals
forces, or through direct chemical linkages, particularly due to intermolecular disulfide
bond/exchange (Wang 2010). Different proteins may have varying levels of propensity to
aggregate through these various methods.

There are no clear regulatory guidelines regarding acceptable levels of aggregation (Guidance
for Industry 2014). The type of aggregation and quantity of aggregates that my illicit an immune
response or lead to reduced clinical benefit is protein dependent (Guidance for Industry 2014).
Through the formulation development process, scientists not only try to attain an
understanding of the type of aggregation the protein is likely to go through but also need to
understand the threshold at which aggregates affect clinical results for that particular protein.
Based on this understanding, scientists try to identify excipients that help stabilize the protein
and reduce aggregation. However, this could be a long, arduous path in which platform
formulations, DOE, trial-and-error, and personal experience are necessary to identify the
excipients and the concentrations in which they are effective. Furthermore, numerous types of
experiments (e.g., size exclusion chromatography, dynamic light scattering) are necessary to
identify aggregates and particle formations due to limitations of any one experimental method
(Guidance for Industry 2014). Lastly, these experiments need to be conducted over various time
points to monitor changes in aggregation and determine the shelf-life of the protein
therapeutic. As industry trends lead to increased need for timely and cost-effective formulation
development, the lack of process improvements in identifying excipients that could reduce
aggregation will only further exacerbate the currently lengthy and expensive process.

2.2 Project Goals

The goal of this project is three-fold:

1. Identify new compounds to be tested computationally and experimentally for their
functionality as excipients that would impact aggregation

2. Develop method to computationally model excipients against a target protein
3. Perform wet-lab experiments and compare results against computational outcomes

This project aims to be the first step in the development of a predictive computational model to
help identify excipients that will reduce protein aggregation for commercial biologic
formulation development at Amgen. The data and recommendations presented in this thesis
will be used to develop a relationship between computational and experimental results through
an iterative process. Ultimately a predictive computational model will be built and incorporated
into Amgen's work flow for formulation development, particularly for proteins that have
aggregation problems and require changes to the platform formulation.
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2.3 Business Implications

There are five key foreseeable business implications associated with the development of a high-
throughput predictive computational model to identify excipients for formulation development.
However, the most important role of this project is to introduce and gain acceptance for the
use of computational technologies in formulation development, a process that has not changed
over the last few decades. There were numerous barriers to the introduction of computational
modelling in formulation development including:

* The opportunity cost of investing money and people-resources towards a long-term goal
like developing computational modelling compared to investing in the immediate needs
for resources in drug development

* The high risk of investing in supporting research that does not seemingly directly impact
current drugs in development and the bottom line

* Potential regulatory challenges associated with the utilization of computational data
and new excipients

* Gaining buy-in from expert scientists who have developed their own knowledge base
and processes and may feel discouraged about the benefits of computational modelling

This project helped to overcome these barriers by identifying immediate potential benefits of
computational modelling to gain a deeper understanding of excipient-protein interaction. It
also helped to demonstrate that advancement in atomic-level modelling capabilities and
computational power will enable the development process to occur at a fast and cost-effective
manner. Lastly, the incorporation of expertise from formulation scientists from the initial stages
of development enables direct alignment with scientists' needs.

There are numerous unrealized benefits that the development of a predictive computational
model may add to formulation development. (1) It allows for the identification of new
excipients that could perform various functions like reducing aggregation, by screening through
databases with thousands of compounds in a systematic way. (2) A key benefit of
computational modelling is its ability to test compounds must faster than conducting wet-lab
experiments. As an example, 50 compounds were tested in approximately two to three days
computationally and over 2.5 weeks of work experimentally for this project. (3) Computational
modelling also allows screening experiments to be more cost-effective. For this project, while
there was $0 variable cost in computationally testing 50 compounds, it costs approximately
$15,000 to purchase them from Sigma Aldrich for experimental evaluation. (4) Lastly,
computational modelling will provide a greater understanding of the excipient-protein
interaction at an atomistic level, enabling smarter formulation development process overtime.

This project may also have additional business implications since new compounds are tested for
their role as excipients. It is particularly difficult to assess the cost-benefits of using new
excipients given the relative uncertainty in their development process and the difficulty in
directly quantifying its clinical benefits for the final protein therapeutic. As such, formulation
development often revolves around excipients that have already been accepted by the FDA
unless there is a clear need that is not fulfilled by those. Through this project, a new set of
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compounds are introduced to the experimental design space to potentially play a role in future
formulation development. The true value of these compounds will only be understood based
on its specific use in protein therapeutic development.

2.4 Project Approach

This project has three distinct phases that are outlined in Figure 5 below. Each of the
subsections in this chapter will explain the considerations and methodology for each of these
stages.

Phase 1: Phase 3:

Identify new compounds Perform wet-lab
that can be computationally elexperiments and
and experimentally tested A0compare results againstA
as excipients computational outcomesA

Figure 5: Overview of Project Approach

The primary hypothesis that will be tested is that excipients from Phase I that are
computationally shown to have a non-specific interaction with the target antibody in Phase 2,
are the ones that will likely reduce antibody aggregation. These excipients will likely interact
with the different regions of the antibody, providing it a broad coverage and preventing the
antibody from interacting with each other. The level of aggregation and protein stability will be
the primary outcomes measured in Phase 3.

2.4.1 Methodology for Excipient Selection

This first phase of this project required the identification and selection of compounds that can
be tested as excipients. In particular, since the goal of this project is to identify the impact of
excipients on protein aggregation, compounds that could increase aggregation and compounds
that could decrease aggregation were sought after. However, there are currently no clear
attributes that help distinguish excipients based on their propensity to impact protein
aggregation in solution. Furthermore, it is not obvious that excipients used in other liquid
protein formulations to reduce aggregation would necessarily have the same properties with
the target protein tested in this project.

So with that in mind, two different approaches were used to identify compounds. The first was
to identify interesting compounds based on conversations with formulation scientists at Amgen
and reviewing secondary literature for excipients that have demonstrated a reduction in
aggregation. However, this resulted in a collection of molecules that had a variety of different
attributes that gave the appearance of a random sample set. Thus, this set of molecules was
not used because they did not constitute a systematic process and may potentially produce
confounding results.
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The second approach was based on identifying databases of compounds with specific
properties or information. Table 4 below describes six major databases of compounds that
were considered for this project and could be used in the future to identify new excipients for
formulation. Compounds from Sigma Metabolites were computationally and experimentally
studied for this project. Chapter 3 explains in more detail the process and rationale associated
with excipient selection.

Table 4: Databases of Compounds Considered for Use as Excipients

Chemical Entities of
Biological Interest
(ChEBI)

40,000 0

*0

*0

*0

Natural and synthetic "small" compounds
Molecules encoded by genomes (e.g.,
nucleic acids, proteins) are not included
Includes ontological classification
Provides SDF and SMILES format

FDA's Inactive 3,200 * Excipients approved by the FDA
Ingredients Database e Information provided on route of

administration, dosage form, and amount
PubChem 63,000,000 e Information on biological activities of

small molecules
* Provides 2D and 3D structures, SMILES,

crystal structures
* Vendor information available, if possible

Sigma Metabolites 250 * Metabolites and cofactors
The Human 42,000 e Metabolites from the human body
Metabolome Database * Contains chemical, clinical, and

biochemistry / molecular biology data
* Provides SMILES structure

ZINC Database 35,000,000 * Commercially available
* Only "biologically relevant" molecules and

their representations
* Built for virtual screening (especially

docking)
* Provides SMILES, mol2, SDF, pdbqt, and

flexibase structure formats

(Sources: "PubChem Compounds" 2017; "Inactive Ingredients Database Download", 2017;
"Metabolites and Cofactors on the Metabolic Pathways Chart", 2017; "'Metabolites &
Cofactors", 2017; Wishart, 2013; Hastings, 2013; Irwin, 2012; "Category: ZINC", 2015.)
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2.4.2 Details on Target Antibody

It is important to note that although the focus of this project is on excipients, the target protein
used to test these excipients significantly impacts the computational and experimental results.
Anti-streptavidin antibody (ASA), shown in Figure 6, was used as the target protein based on its
availability through Amgen for research and publication.

Figure 6: Anti-streptavidin Antibody

ASA is a monoclonal antibody that binds to streptavidin, a protein from the bacterium
Streptomyces avidinii ("Anti-Streptavidin antibody [S3E11]", 2017). Streptavidin has one of the
strongest non-covalent binding affinity to biotin, with a disassociation constant (Kd) of 1014
moles/liter ("Anti-Streptavidin antibody [S3E11]", 2017). As such, it is commonly used in
immunoassays against biotinylated proteins ("Anti-Streptavidin antibody [S3E11]", 2017). ASA
binds with streptavidin without blocking its ability to bind with biotin ("Anti-Streptavidin
antibody [S3E11]", 2017). ASA is an immunoglobulin G (lgG) molecule and commonly available
as either IgG1 or IgG2 subclasses.

For this project mammalian anti-streptavidin IgG2 (referred to as ASA2) was used for
computational modelling and wet-lab experiments. ASA2 has been shown to have higher
aggregation compared to ASA1 under "physiological pH and mildly elevated temperatures"
(Franey 2010). In particular, this study indicates that the IgG1 and IgG2 subclasses of ASA were
incubated at 20 mg/mL concentration in 20mM sodium phosphate, 5% (w/v) sorbitol, at pH 7.0
and temperature of 45'C for up to 12 weeks (Franey 2010). The study identifies that the greater
number of disulfide bonds in ASA2 leads to increased aggregation compared to ASA1 (Franey
2010). Based on the findings from the Franey study, ASA2 was used for this project. ASA2, given
its higher propensity for aggregation, is more likely to show a greater range in aggregation
across different excipients and controls than ASAl. Additional details regarding the
computational model and experimental conditions under which ASA2 was studied are discussed
in the sections below.
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2.4.3 Methodology for Computational Modelling
2.4.3.1 AutoDock versus Molecular Dynamics Simulation

Phase 2 of this project was focused on developing a computational model to simulate the
excipient-protein interaction. The goal of this phase is to not only gain a stronger scientific
understanding through atomistic level modelling of excipients and ASA2, but also to use the
results to hypothesize on outcomes from wet-lab experiments on aggregation. Currently there
are no computational models that are widely accepted and used in formulation development
for protein drug therapies. Thus there are two possible options that could be pursued. Under
the first option, a completely new method to computationally model excipient-protein
interaction is developed from scratch. However, this is not only out of the scope of this project
due to resource and time constraints, but might not be the most effective starting point since
understanding of excipient-protein interactions in solution is limited. The second option is to
use existing molecular modelling tools to piece together a stronger understanding of excipient-
protein interaction and through an iterative process, build a composite model that uniquely
serves the needs of formulation development.

This project serves as the first step of the iterative process described above. AutoDock Vina and
Molecular Dynamics (MD) Simulation were explored initially as options to model excipient
protein-interaction. AutoDock Vina is a molecular docking tool that uses Amber force fields to
calculate free energy of ligand-macromolecule binding at different sites of the macromolecule.
It uses a scoring function that calculates the standard chemical potentials of the system using a
machine learning approach and outputs a specified number of binding positions and binding
affinities at those positions. Within a user-specified search space, AutoDock Vina attempts to
find the global minimum free energy of binding. MD Simulation is a computational method to
study the trajectory of atoms and molecules in a defined time period using Newtonian
mechanics. Given a macromolecule and a specified concentration of ligands and buffer, MD
simulations can model the trajectory of each of the molecules in the user provided time scale.
Figure 7 below visually represents the output from AutoDock Vina and MD Simulation for
lysozyme and a small molecule called niacinamide.
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Lysozyme with Niacinamide

AutoDock Vina Molecular Dynamics
Simulation

Figure 7: Visual Representation of Output from AutoDock Vina and Molecular Dynamics Simulation

Despite these interesting functionalities of both AutoDock Vina and MD Simulation, only one of
these models could be pursued at this stage of computational development due to time
constrains. Focusing on one model allows for effective use of resources and targeted
computational and wet-lab experimental design. In order to select a tool to pursue further,
both AutoDock Vina and MD Simulation were evaluated across five main criteria. These criteria
are described below and in greater detail in Table 5.

1. Input: Files are quickly generated
2. User Interface: Easy to use
3. Modelling Requirements: Fast for high-throughput screening
4. Modelling Complexity: Provides additional insight into excipient-protein interaction
5. Output: Can be quickly analyzed to identify excipients for formulation

AutoDock Vina was pursued as the primary modelling tool in this project because it meets the
initial criteria for a high-throughput screening tool to select excipients. Section 4.1 discusses in
greater detail the reasoning for choosing AutoDock Vina over MD Simulation. Section 2.4.3.2
below goes through the detailed methods that were used to screen almost 250 excipients on
AutoDock Vina.
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Table 5: Overview of AutoDock Vina and MD Simulation

Files required

Ease of generation

PDBQT

Easy

Force fields: Non-
bonded parameters
and bonded
parameters

Difficult (for high
accuracy)

User Interface Operating Systems Windows, Linux, & Macs Linux & Macs

Coding Necessary Yes Yes

Modelling Computational power Low High
Requirements Time Low High

Modelling pH Change protonation Change protonation

Complexity Buffer Implicit Can add

Protein surface No change Changes
conformation

Protein structural Manual iterations Manual iterations
conformation

Excipient One molecule Match experimental
concentration values

Binding affinity

Binding sites

Residence times

Difficulty for analysis

Yes

Yes

No

Low

No*

No**

Yes

High

*Although not a direct output, can be calculated
**Not a direct output, can be calculated, but computationally very
expensive

2.4.3.2 AutoDock Input, Run Criteria, Output

AutoDock consists of a set of automated docking tools produced by The Molecular Graphics
Laboratory at The Scripps Research Institute (Morris 2007). Five different versions of AutoDock
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have been release since 1989/1990, with the latest versions being AutoDock 4 and AutoDock
Vina (Morris 2007). Of these two, AutoDock Vina is used for this project since it improves
accuracy of binding mode predictions compared to AutoDock 4, does not require the
calculation of grid maps, and is approximately two orders of magnitude faster (see Figure 8).
This enables a relatively easy and quick scan of the entire target antibody for potential binding
spots.

521.81

8.41
0 A utoDock
N N ina (cpu= 1)

1.16 0 N ina (cpu= B)

0 100 200 300 400 500 600

Figure 8: AutoDock versus AutoDock Vina (Average Time (Minutes) per Complex)

(Trott, 2010)

There are three key inputs that are required to run AutoDock Vina. The first is a PDBQT (Protein
Data Bank Partial Charge (Q) & Atom Type (T)) file of the macromolecule; the second is a set of
PDBQT files for the excipients; and third is the input criteria to run the simulation on AutoDock
Vina. As mentioned in Section 2.4.2, ASA2 was selected as the macromolecule for AutoDock
Vina simulations. The structure of ASA2 was provided for this project by Clark et al. (2013).
However, the structure did not include the sugars in-between the Fc regions and were added
from the intact crystal structure of 1 HZH (Saphire 2001). Thus the entire structure of ASA2
contained approximately 29,194 atoms, 1,314 amino acid residues, and 16 sugars. ASA2's
overall structural variability in different conformation was also considered for this project. As
shown in Figure 9 below, ASA2 has the flexibility to take on many different structural
conformations due to factors like the hinge region that connects the Fc segment to the Fab
arms.
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Figure 9: Areas of Flexibility for IgG

(Brekke, 1995)

Computational analysis of ASA2 using SASSIE produced 56,511 distinct conformations (Clark,
2013). The structural conformations taken on in solution depends highly on factors like the pH,
temperature, and other compounds in solution. Thus, the part of the antibody that is exposed
for interactions with excipients can be highly variable and can strongly influence the excipient-
protein relationship. AutoDock Vina keeps the macromolecule, ASA2, static and thus does not
allow for dynamic variations in structural conformations. Three different structures of ASA2
were used based on findings from Clark 2013 and analysis of probability of occurrence in pH 5.2
buffer. Figure 10 below shows the final three conformations that were used in this study.
AutoDock Vina was run three times for each excipient-conformation combination, resulting in a
total of 9 AutoDock Vina runs for every excipient.

Conformation I Conformation 2 Conformation 3
(Occurs -10% of me ime (Occurs -0% of he t"e (Occurs -7% of te time

in soluton) in soluuon) In soluon)

Figure 10: Final Conformations of ASA2 Used for AutoDock Vina Modelling
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The structure for ASA2 was provided in the Protein Data Bank (PDB) format. At a high level, PDB
files contains information on coordinates of each atom in a molecule and their connectivity.
There are six different line items of information, or records, that can be provided for the PDB
file. Table 6 below describes the information that is required for each record type.

Table 6: PDB Format: Information Necessary for Different Record Type

Selected Protein Data Bank Record Types

Record Data Provided by Record
Type

ATOM atomic coordinate record containing the X,Y,Z orthogonal A coordinates for atoms in standard
residues (amino acids and nucleic acids).

atomic coordinate record containing the X,Y,Z orthogonal A coordinates for atoms in nonstandard

HETATM residues. Nonstandard residues include inhibitors, cofactors, ions, and solvent. The only functional
difference from ATOM records is that HETATM residues are by default not connected to other
residues. Note that water residues should be in HETATM records.

indicates the end of a chain of residues. For example, a hemoglobin molecule consists of four
TER subunit chains that are not connected. TER indicates the end of a chain and prevents the display of a

connection to the next chain.

HELIX indicates the location and type (right-handed alpha, etc.) of helices. One record per helix.

SHEEK, indicates the location, sense (anti-parallel, etc.) and registration with respect to the previous strand
in the sheet (if any) of each strand in the model. One record per strand.

SSBOND defines disulfide bond linkages between cysteine residues.

("Introduction to Protein Data Bank Format", 2014)

Figure 11 below is an example of a PDB format and contains a sample of records for
hemoglobin. The first item of the record indicates the type. The second item (column) indicates
the atom serial number, which is typically the line number of the record. The third item
indicates the atom and the fourth item indicates the residue in which the atom is found. The
fifth item indicates the chain in which the residue is located. Hemoglobin contains two alpha
chains and two beta chains. The entries shown in Figure 11 are all from one of the two alpha
chains in hemoglobin. The sixth item is the residue number within the chain. Items seven
through nine provides the xyz coordinates of the record. Item ten is the occupancy; item eleven
is the temperature factor; and lastly item twelve is the element symbol.
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ATOM 1058 N ARG A 141 -6.466 12.036 -10.348 7.00 19.11 N

ATOM 1059 CA ARG A 141 -7.922 12.248 -10.253 6.00 26.80 C
t-- ---

ATOM 1060 C ARG A 141 -8.119 13.499 -9.393 6.00 28.93 C

ATOM 1061 0 ARG A 141 -7.112 13.967 -8.853 8.00 28.68 0

ATOM 1062 CB ARG A 141 -8.639 11.005 -9.687 6.00 24.11 C

ATOM 1063 CG ARG A 141 -8.153 10.551 -8.308 6.00 19.20 C

ATOM 1064 CD ARG A 141 -8.914 9.319 -7.796 6.00 21.53 C

ATOM 1065 NE ARG A 141 -8.517 9.076 -6.403 7.00 20.93 N

ATOM 1066 CZ ARG A 141 -9.142 8.234 -5.593 6.00 23.56 C

ATOM 1067 NH1 ARG A 141 -10.150 7.487 -6.019 7.00 19.04 N

ATOM 1068 NH2 ARG A 141 -8.725 8.129 -4.343 7.00 25.11 N

ATOM 1069 OXT ARG A 141 -9.233 14.024 -9.296 8.00 40.35 0

TER 1070 ARG A141

HETATM 1071 FE HEM Al 8.128 7.371 -15.022 24.00 16.74 FE

HETATM 1072 CHA HEM Al 8.617 7.879 -18.361 6.00 17.74 C

HETATM 1073 CHB HEM Al 10.356 10.005 -14.319 6.00 18.92 C

HETATM 1074 CHC HEM Al 8.307 6.456 -11.669 6.00 11.00 C

HETATM 1075 CHD HEM Al 6.928 4.145 -15.725 6.00 13.25 C

Figure 11: Sample PDB File for Hemoglobin

("Introduction to Protein Data Bank Format", 2014)

The PDB files for each of three ASA2 conformations were converted to PDBQT format to be

compatible with AutoDock Vina. In addition to the coordinates and connectivity information in

the PDB files, PDBQT files contain partial charges and AutoDock atom types for each atom

(Morris, 2007). PDBQT files also have united atom representation (Morris, 2007). This results in

all non-polar hydrogens being combined with heavy atoms and only polar hydrogens are

explicitly shown (Morris, 2007). PDB files can be converted to PDBQT files using the
preparereceptor4.py python script provided by AutoDock (Huey, 2010). The PDBQT files of

ASA2 were directly fed into AutoDock Vina without any additional modification.

In total, 247 excipients were modelled against ASA2 using AutoDock Vina. These excipients are

listed in Exhibit A of the Appendix. They range in molecular weight from 60 g/mol to 850 g/mol

and vary in the type of compounds from amino acids to sugars, lipids, and nucleotides.

Simplified molecular-input line-entry system (SMILES) structure for each excipient was
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downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/), ChEBI
(https://www.ebi.ac.uk/chebi/init.do), or ZINC (http://zinc.docking.org/). Open Babel was used
to convert the SMILES structures to PDB files and python script, prepareligand4.py, provided
by AutoDock was used to convert the PDB files to PDBQT files (O'Boyle 2011, Huey 2007).

Once prepared, the PDBQT files of ASA2 and excipients were fed into AutoDock Vina along with
few other specifications on the run criteria. The pH of ASA2 and the excipients were included in
the protonation states of these molecules at pH 7. In addition to this, the center and xyz
dimensions of the search space was provided based on adding 10A to each dimension of ASA2's
size. The maximum number of binding modes that was specified was 30; however, AutoDock
Vina only produced 20 binding modes per excipient-protein combination likely due to either
finding only that many interesting binding modes or because it was limited by the energy range.
Although no additional variables were specified, AutoDock Vina has options to modify other
variables including varying the exhaustiveness of the search, providing a specific energy range,
and specifying an explicit random seed "AutoDock Vina Manual" 2010".

AutoDock Vina produced two different output files. One of them was a log file that contained
the binding affinities at each of the 20 different binding positions. The other was a PDBQT file
with the coordinates of the binding positions. Thus, for each excipient-protein combination, it
was possible to visualize the 20 different binding positions using Visual Molecular Dynamics
(VMD) or other molecular graphics systems. Some of the excipients tested were visualized in
this manner to gain a qualitative insight into the range of binding sites. However, in order to
develop a quantitative and systematic way to analyze the results for 247 excipients, each of
which was modelled 9 times, the following methods were used.

Binding Affinity: The standard error for calculating binding affinity in AutoDock Vina is around
2.85 kcal/mol (Trott 2010). On average, the range of difference in binding affinities across all of
the runs for each excipient was around -2.07 kcal/mol. Only 35 excipients had a range greater
than 2.85 kcal/mol. Thus it is assumed that the 20 different binding positions identified are
more or less equivalently favorable. Therefore, at first the average binding affinity was
calculated across the 3 runs for each of the 3 conformations (60 binding affinities /
conformation). Then a weighted average was calculated across the three different
conformations based on the probability of occurrence as described in Figure 10. This resulted in
each excipient having one value for binding affinity that described its overall attraction to ASA2.

Footprint: Footprint was a new metric that was derived to understand the degree to which
each excipient covered the surface of ASA2. All 60 binding positions for each conformation of
ASA2 were superimposed for every excipient. The area of of ASA2 that is not interacting with
the metabolite were subtracted away. The remaining area represented the excipient's coverage
on that conformation. This value was divided by the total surface area of ASA2 in that
conformation to understand the footprint or the proportion of the antibody that are covered by
these 60 positions. Then a weighted average of the footprints for the three different
conformations based on their probability of occurrence (as described in Figure 10) was
calculated. Similar to the calculation for binding affinity, this resulted in one final value for each
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excipient. This footprint value provides an idea of the proportion of ASA2 that is covered by
each excipient.

Spread: One key hypothesis of this project, described in greater detail in Section 4.3, is that an
excipient that provides more coverage of ASA2 is more likely to reduce aggregation because it
prevents antibody-to-antibody interaction. Thus, in addition to footprint, another quantitative
metric was necessary to understand if the excipient is only interacting with a certain
component of ASA2 or if it is interacting with the different components. Spread was calculated
by first calculating the center of mass for each binding position. The average center of mass (p)
for each conformation was calculated across the 60 different binding positions. The variance of
the center of mass for each conformation was calculated using the following formula to derive
the spread per conformation: VAR = I(xi - p)2. Lastly the weighted average of the spreads for
the three different conformations of the antibody were used to calculate one final spread value
for each excipient. A larger spread indicates that the excipient is attracted to and covers
different parts of the antibody. A smaller spread indicates that the excipient likely has more
localized interactions with the antibody.

The average binding affinity, spread, and footprint were plotted on graphs and to the extent
possible a variety of excipients were selected from different quadrants of the graph for wet-lab
experiments. Excipient selection was constrained by two main factors: (1) excipient has to be
safe to handle during wet-lab experiments and (2) excipients should have a molecular weight
less than 500kD to avoid solubility issues. A more detailed analysis of the excipient selection
process and a final list of excipients selected are described in Section 4.4.

2.4.4 Methodology for Wet-lab Experiments
2.4.4.1 ASA2 Preparation

Purified ASA2 from mammalian cell culture was provided by Amgen in 20mM sodium acetate
solution at a concentration of 30mg/ml. Approximately 12ml of the ASA2 stock was dialyzed
into a pH 5.2 10mM glutamic acid+10mM sodium phosphate buffer, using a Pierce Slide-A-Lyzer
Dialysis Cassette at a million fold dilution, including three buffer changes, at 40C. This process
was repeated to get another 12ml of the ASA2 stock into a pH 7.5 10mM glutamic acid+10mM
sodium phosphate buffer and another 12ml into a pH 3.5 10mM glutamic acid+10mM sodium
phosphate buffer. The concentration of the dialyzes samples were measured using a
spectrophotometer, with absorbance at 280nm and an extinction coefficient, E, of 1.6
(mL/(mg*cm)) (Clark 2013). The concentrations of the ASA2 samples after dialysis and the final
concentrations used to set up the first run and second run of the wet-lab experiments are listed
in Table 7. The post-dialysis samples were diluted using their respective pH buffers to achieve a
target concentration 10mg/mL for experimentation.
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Table 7: Concentrations of ASA2 Samples

3.5 20.84 mg/mL 10.43 mg/mL 9.89 mg/mL

5.2 18.76 mg/mL 9.81 mg/mL 10.33 mg/mL

7.5 21.1 mg/mL 10.13 mg/mL 10.43 mg/mL

2.4.4.2 Excipient Sample Set-up

The final list of excipients tested experimentally and the high and low concentrations used are
shown in Table 8 below. Excipient preparation occurred through the following steps:

* Solubility of each of the 32 excipients was determined based on secondary sources
* High concentration stock solutions were 80% of maximum molarity based on solubility

limits for each excipient
o 125 pL of high concentration stock solution necessary per excipient for one run

of all three experiments (DLS, DSF, and SEC)
o Eight times this volume (1mL) was produced approximately
o The grams of excipients necessary was based on the following formula: Molarity

at maximum solubility * 80% * Molecular Weight*(1*10A-3L)
o Each excipient was weighed out into 2.OmL Eppendorf tubes and dissolved in

approximately 1mL of pH 5.2 10mM glutamic acid+10mM sodium phosphate
buffer

o Each sample was titrated to pH 5.2 approximately, if necessary, using 5N HCI, 1N
HCI, 1ON NaOH, and 1N NaOH

o The approximate final high concentration used in experiments (and shown in
Table 8) is half the molarity of the stock concentration since 125 pL of this
sample was added to 125 pL of ~10 mg/mL ASA2

* Low concentration stock solutions are at 20% of the molarity of the high concentration
stock solutions

o 125 [L of low concentration stock solution necessary per excipient for one run of
all three experiments (DLS, DSF, and SEC)

o 25 pL of high concentration stock solution was added to 100 pL of pH 5.2 10mM
glutamic acid+10mM sodium phosphate buffer

o 125 pL of ASA2 sample was added to 125 VL of the low concentration excipient
solution, effectively cutting in final concentration in half (as shown in Table 8)

* Stock solutions for pH3.5 and pH7.5 were created from the pH 5.2 high concentration
stock solution for each excipient

o Approximately 300p1 of pH 5.2 stock solution was titrated pH 3.5 and another
300p1L was titrated to pH 7.5

o 125 pL of the titrated samples were used for the high concentration experiments
for each pH and 25 pL was used for the low concentration and diluted by 100 pL
buffer at each pH
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Table 8: Concentrations of Excipients Used in Wet-lab Experiments

High Concentration Low Concentration
Excipients Stoichio- Stoichio-

Molarity metric Ratio Molarity metric Ratio
b-Alanine
DL-b-Aminoisobutyric acid
Oxaloacetic acid
L-(-)-Malic acid
D-(+)-Glucose
0-Phosphorylethanolamine
a-Ketoglutaric acid disodium
salt hydrate
L-Serine
Betaine
L-Threonine
Sodium succinate dibasic
hexahydrate
D-(+)-Cellobiose
Adonitol 99%
Adenosine 5'-monophosphate
disodium salt
L-Arginine
myo-Inositol 99%
Thymidine 5'-monophosphate
disodium salt hydrate
L-Carnitine hydrochloride
D-Glucuronic acid sodium salt
monohydrate
L-Leucine
L-Glutathione
Sodium phenylpyruvate powder
Adenosine 5'-diphosphate
sodium salt
L-Tryptophan
Phospho(enol)pyruvic acid
trisodium salt hydrate
Homogentisic acid
Glycocyamine
Orotic acid
Indole-3-acetic acid sodium salt
S-(5'-Adenosyl)-L-homocysteine
crystalline

2.3E+00
1.4E+00
2.8E-01
2.9E-01
3.OE-01
2.9E-01

2.2E-01

2.1E-01
1.9E-01
2.2E-01

1.5E-01

1.5E-01
1.3E-01

1.1E-01

1.lE-01
1.2E-01

1.1E-01

1.OE-01

8.2E-02

6.7E-02
6.1E-02
5.9E-02

4.8E-02

1.8E-02

2.2E-02

1.8E-02
6.3E-03
5.1E-03
8.2E-03

1.1E-03

69279
40816
8492
8734,
8914
8640

6515

6220
5695
6634

4414

4471
3892

3320

3368
3459

3184

3086

2472

2010
1830
1778

1450

527

657

538
189
152
246

32

41

4.6E-01
2.7E-01
5.7E-02
5.8E-02
5.9E-02
5.8E-02

4.3E-02

4.1E-02
3.8E-02
4.4E-02

2.9E-02

3.OE-02
2.6E-02

2.2E-02

2.2E-02
2.3E-02

2.1E-02

2.1E-02

1.6E-02

1.3E-02
1.2E-02
1.2E-02

9.7E-03

3.5E-03

4.4E-03

3.6E-03
1.3E-03
1.OE-03
1.6E-03

2.2E-04

13856
8163
1698
1747
1783
1728

1303

1244
1139
1327

883

894
778

664

674
692

637

617

494

402
366
356

290

105

131

108
38
30
49
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L-Tyrosine
Xanthine

2.2E-04
4.9E-05

7
1

4.5E-05
9.7E-06

1
0.3

2.4.4.3 Master Plate Set-up
"Master" plates were set up with all of the formulations once stock solutions were prepared for
ASA2 and the excipients at the appropriate pHs. Specifically, three 96-well plates were created
for each run, with each plate containing the high and low concentrations of the 32 excipient-
protein samples in that pH and four controls of just ASA2 in 10mM glutamic acid+10mM sodium
phosphate buffer at the relevant pH. Preparation of master plates involved pipetting 125 pL of
high or low concentration of excipients into a well, adding 125 tL of ASA2 at the appropriate
pH, and pipetting a few times to mix the sample. The 96-well plate design is shown in Figure 12
below. This design was replicated for each of the 3 pHs and across the first and second run.
Samples for the three wet-lab experiments were taken out of this plate and replaced back,
where relevant.
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Figure 12: Wet-lab Experiments Plate Design

2.4.4.4 Size Exclusion Chromatography

High-throughput size exclusion chromatography (SEC) was used to determine the proportion of
excipient-protein sample that is composed of soluble high molecular weight components (i.e.,
aggregates). Through this method, the larger aggregates elute from the column first, followed
by monomeric protein, and lastly any fragments or excess metabolites. Waters Acquity H-class
UPLC system at the Amgen facility was used to run this experiment in a high-throughput
manner. Approximately 60 pL from master plates were pipetted into new 96-well plates for
each sample, including the controls, across each concentration and pH, for each run. Each
sample is automatically collected from the 96-well plate at a rate of 0.4 mL/min and a runtime
of minutes. About 10 ptg of each sample were run through a gel filtration column and eluted
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with 100mM sodium phosphate buffer at pH 6.76. An UV diode array detector was used to

capture the absorbance of the sample as it elutes off the column at 280nm. Empower, the
software, was used to collect the results and identify the concentration of different
components using Integration under the absorbance curve The graphs shown in Figure 13
below show the absorbance curve for ASA2 - Control sample, pH 3.5, at TO and 1 week. The
graphs have also been integrated and show the % of HMW (high molecular weight), % of Main
(ASA2 monomers), and % of LMW (fragments and/or excipients) components of the solution.
For this particular sample, an increase in aggregation is observed after 1 week. For the first run,

TO, 1 week, and 1-month time points were collected. TO and 1-month time points were
collected for the second run. In between the runs, any remaining samples were collected and

placed back into the master plates and incubated in 400C.

ASA2 - Ca" -TO0

00

on

0 W 06 .. IM 1 5D 2W 0 25D 3LW D 15) 4 01 4 ) 50D 55D "IW

Figure 13: SEC Output and Analysisfor ASA2 in pH 3.5 at TO and I Week

2.4.4.5 Dynamic Light Scattering

Dynamic Light Scattering (DLS) is used to determine the distribution of particle size in solution.

DynaPro Plate Reader 11 with Touch from Wyatt Technology was used to read excipient-protein

samples in 96-well plates that replicated the design of the master plates. Approximately 60 tl-

of each formulation was transferred from the master plate to a black bottom imaging plate. The

samples were covered and plates were centrifuged for 2 minutes at 1000 RPM to get rid of air

bubbles. The 96-well plates were placed into the Plate Reader (one at a time) and data was

collected after 15-minutes of equilibration. Light from lasers is shined through the particles in

suspension and the resulting scattering of light is captured to understand various properties of

the sample, including the mass distribution of particles in sample and the size distribution.

While DLS results can depict the level of aggregation in a sample, it was used in this project to
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identify any changes in the radius of ASA2 monomer. Figure 14, shown below, depicts changes
in radius with serine and alanine compared to control. The changes in the radius of the
monomer could be an interesting metric to analyze the stability of the monomer and
potentially connect it with aggregation.

ASA2 with Serine
(radius = 4.8nm)

01 010 1.00 00 100.00

ASA2 - Control
(radius = 5.Onm)

00 ASA2 with Alanine
-(radius = 7.9nm)

30
20

.1 010 1.00 00 10000 10.E3 10.E4

Figure 14: Sample DLS Results and Analysis

2.4.4.6 Differential Scanning Fluorimetry

Differential scanning fluorimetry (DSF) is a technique used to determine the melting

temperature (Tm) of a protein. Approximately 19 pxL of each excipient-protein sample was
transferred from the master plate to a similarly designed 96-well plate. SYPRO Orange, a
fluorescent dye that binds to the hydrophobic areas often in the core of the antibody, was
added to the sample. About 2 tl- of SYPRO Orange from stock was added to 10ml- of 10mM

glutamic acid buffer at pH 4.8 to dilute the stock solution. Approximately I [L from this diluted
solution was added to each sample in the 96-well plate. The final plate was placed in a Bio-Rad
CFX96 thermal cycler platform instrument. As the samples were heated slowly over time, the
protein started to unfold at different rates and release the dye. The rate of release of the

SYPRO Orange dye over time is used to determine Tm in the CFX Manager software.

More specifically, the release of the dye in each sample was captured as Relative Fluorescence
Units (RFU) over temperature. The first derivative of the RFU versus temperature curve, -
d(RFU)/dT, shows the rate of fluorescence release. The minimum in the -d(RFU)/dT curve

shows the melting temperature. The graph in Figure 14 depicts the results from the CFX
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Manager software for ASA2-Control and two different formulations. Excipient that stabilizes
ASA2 led to an increase in Tm, like glycosamine shown in Figure 14. TO was collected for the
first run. The 1-month time point was collected for both the first and the second run. The
samples were discarded after each run since ASA2 was completely denatured after the heating
process.

I
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*A SA2 with S-(5'-Adenosyl)-L-
homocysteine crystalline (Tm= 62.40 *C)

'ASA2 - Control (Tm = 62.60'C)
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Figure 15: Sample DSF Results and Analysis
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3. Excipient Selection
As described in Section 2.4.1, six different databases of compounds were considered for their
use as excipients in formulation development. These databases are: (1) Chemical Entities of
Biological Interest (ChEBI), (2) FDA's Inactive Ingredients Database (lID), (3) PubChem, (4) Sigma
Metabolites, (5) The Human Metabolome Database, and (6) ZINC Database. For the purpose of
this project, the FDA's lID and Sigma Metabolites were the top two choices and ultimately
compounds from Sigma Metabolites were tested computationally and experimentally. The
sections below discuss in detail the advantages and disadvantages of each of these two
databases and the rationale for choosing Sigma Metabolites.

While the other four databases contain a larger number of compounds and may present more
interesting solutions for unique formulation challenges, they were out of scope for this project.
Given that the primary goal of this project is to build a proof-of-concept model and through
that process, achieve the secondary goal of identifying new excipients, the time, cost, and
effort required to model these large datasets would not have a business justification to pursue
at this time. However, once a robust model has been developed, it would be a worthwhile
endeavor to computationally model the compounds in one or more of these databases so that
they can be tested with new proteins.

3.1 Characteristics of Excipients Approved by FDA
FDA's Inactive Ingredients Database (lID) is one of the most promising databases to start with in
any formulation development process for two main reasons:

1. Faster approval and fewer requirements by the FDA for excipients already in the
database

2. Higher level of confidence that excipient will work, particularly for a similar formulation
and protein modality

However, it is important to be cautious of the fact that biotech companies and specialized
formulation development companies might have patents on some of the excipients in the
database that restrict their usage to certain formulation and/or require heavy licensing fees.
Furthermore, changes in modalities, concentration, and chemical structure of the excipient may
warrant additional studies by the FDA. Thus it would still be important to be cautious about the
use of compounds from this database. (FDA's lID:
https://www.fda.gov/Drugs/informationOnDrugs/ucm113978.htm)

This history and overview of the FDA's regulatory approach towards excipients is described in
Section 1.3.1. FDA began to review excipients, identified primarily as inactive ingredients, in the
regulatory approval pathway of new drugs after the Federal Food, Drug, and Cosmetic Act of
1938 (Davis 2006). Since then, the FDA has published Guidance Documents to provide more
insight into its expectations for new excipients ("Search for FDA Guidance Documents" 2017). In
addition to this, the FDA also publishes the Inactive Ingredients Database (lID) that contain
most, if not all excipients that are present in approved drugs. If there are any excipients missing



from this database at all, it is likely because they are considered to be "active" ingredients that
directly impact the therapeutic response of the drug.

An updated version of the lID is published by the tenth working day of every quarter (i.e., April,
July, October, and January) ("Inactive Ingredients Database Download" 2017). The database
can be downloaded and/or interactively used online to search for excipients. There are seven
key variables defined for each excipient: (1) Name of the inactive ingredient, (2) Route, (3)
Dosage Form, (4) CAS Number, (5) UNII, (6) Potency Amount, and (7) Potency Unit ("Inactive
Ingredients Database Download" 2017). The names of the inactive ingredients are typically
based on the submission by the first manufacturer; however, recently the names were changed
to be consistent with the FDA's Substance Registration System (SRS) ("Inactive Ingredient
Search..." 2017). Since the various synonyms of a particular compound are not present in the
lID, the SRS can also be used to identify the preferred name ("Inactive Ingredient Search..."
2017). The route indicates the type of delivery for the drug (e.g., intravenous, oral) and the
dosage form indicates its formulation (e.g., lyophilized powder, solution, tablet). The CAS
Number is the Chemical Abstracts Service Number that is used by the American Chemical
Society to register unique compounds and can be used to search the compounds in other
database ("Inactive Ingredient Search..." 2017). UNII, Unique Ingredient Identifier, is similar to
CAS Number in that it is unique alpha-numeric identifier provided to each new compound and
used by the United States Pharmacopeia (USP) and the SRS to collect information on these
compounds ("Inactive Ingredient Search..." 2017). The potency amount and unit describe the
maximum amount excipient used in the approved drug product per dose. However, this does
not indicate the maximum daily intake (MDI) of the excipient since patients may have to take
multiple doses of a drug in a given day.

For this project, October 2015 lID was used for further analysis since it was the latest available
update at the time of execution of the research in February 2016. A total of approximately
13,583 line-items were listed in this database. However, only 3,209 unique compounds were
present based on ingredient names. The remaining 10,374 line items were repeats of the same
compounds but in different route, dosage form, or potency amount. Of the 3,209 excipients on
this list, 291 were used in intravenous or subcutaneous formulation. Since generally protein
therapeutics are formulated for intravenous or subcutaneous delivery, this filter is the most
time-effective way to identify excipients used in this formulation. Among these 291
compounds, 35 are already used in Amgen's commercialized study. Discussions with Amgen's
senior scientists revealed that they have also had experience with an additional 173 compounds
from the list. This leaves a total of 83 compounds (shown in Table 9) that are completely new to
Amgen's formulation development team and should be considered in the future for
computational and wet-lab experiments.

Table 9: Potential Compounds for Consideration as Formulation Excipients for Parenteral
Administration

.beta.-cyclodextrin sulfobutyl ether gentisic acid octreotide
sodium
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bibapcitide
brocrinat
calcium gluceptate

calcobutrol
caldiamide sodium
caloxetate trisodium
calteridol calcium

diacetylated monoglycerides
diatrizoic acid

dimethicone
dimethyl sulfoxide
dipalmitoylphosphatidylglycerol,
dl-
disodium citrate sesquihydrate
disodium sulfosalicylate
disofenin
distearoylphosphatidylcholine, dl-
egg phospholipids
ethanolamine hydrochloride
ethylenediamine
ethylene-vinyl acetate copolymer
(15% vinyl acetate)
ethylene-vinyl acetate copolymer
(28% vinyl acetate)
ethylene-vinyl acetate copolymers
exametazime
fosveset
gadolinium oxide
gamma cyclodextrin
gelatin

gentisic acid ethanolamide
gentisic acid ethanolamine
gluceptate sodium

gluceptate sodium dihydrate
gluconolactone
glucuronic acid
hetastarch

hexylresorcinol
hydroxyethylpiperazine ethane
sulfonic acid
hydroxypropyl cellulose (type h)
iobenguane
lactic acid, dl-

lactic acid, I-
lactic acid, unspecified form
lactobionic acid
lidofenin
magnesium stearate
maleic acid
mebrofenin
medronate disodium

medronic acid

metaphosphoric acid
methanesulfonic acid
methylboronic acid
n,n-dimethylacetamid
niacinamide
nioxime

oleic acid
oxidronate disodium
pentasodium pentetate

pentetate calcium trisodium
pentetic acid
perflutren
poloxamer 188
polyglactin
povidone k12

povidone k17
protamine sulfate
sodium ascorbate

sodium benzoate
sodium bicarbonate
sodium carbonate
sodium chlorate
sodium citrate, unspecified form
sodium desoxycholate

I sodium gluconate
sodium hypochlorite

sodium metabisulfite

sodium trimetaphosphate
triethyl citrate
tromantadine

e urethane
versetamide

While these compounds were strongly considered for computational modelling, they were not
ultimately used in this project. These compounds are diverse and their impact on protein
aggregation is not clear apriori. The only two unifying attributes of these compounds are that
they are approved by the FDA as excipients in IV and SC formulations and are new to Amgen. Of
the two options considered (compounds from the FDA's lID and metabolites from Sigma), the
compounds from FDA's lID seem like it could produce results whose trends might be difficult to
extrapolate.

3.2 Rationale for Selecting Metabolites

Metabolites from Sigma Aldrich were chosen for computational modelling and wet-lab
experiments for this project. Metabolites present an interesting opportunity for formulation
development. Endogenous metabolites in particular may have lower likelihood of triggering
adverse events or immune reaction since these compounds are already found in the human
body. This could also lead to fewer non-clinical and clinical studies to be required by the FDA for
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excipient approval. Furthermore, metabolites in certain classes have already shown to have an
impact on protein stability. For example, sugars like mannitol and fructose and amino acids like
lysine and arginine have shown to reduce or prevent aggregation by lowering the
thermodynamic activity of proteins (Basavaraj 2014). It is possible that exploration of
metabolites in these classes or with similar structure could result in excipients that are even
better at these function. However, it would be also important to be cautious about the impact
of these metabolites on the body since variations in concentrations could result in adverse
events.

As of May 2016, The Human Metabolome Database had 41,993 compounds (Wishart 2013). Of
these, approximately 29,289 are endogenous and 3098 of these are actually detected (Wishart
2013). While this database serves as a repository for Amgen to explore in the future,
metabolites from Sigma Aldrich were used for this project because it contained (1) a smaller
sample set that was reasonable to model within the time constrains of the project, (2)
metabolites from different classes including amino acids, carbohydrates, and lipids, (3) easy to
purchase if selected for wet-lab experiments. Sigma Aldrich has approximately 301 unique
metabolites that are available to be purchased. Of these approximately 80 are amino acid
metabolites, 103 are carbohydrate metabolites, 76 are lipid / cholesterol metabolites, 40 are
nucleotide metabolites, and 32 are metabolites from the TCA cycle or porphyrin metabolites
(The sum of these add to greater than 301 since some metabolites are double counted in
different classes) ("Metabolites & Cofactors", 2017). The complete list of metabolites available
from Sigma for purchase (and modelled in this project) are provided in Exhibit A of the
Appendix. Many of these compounds are already used as excipients in commercialized drugs
and listed in the lID. (However, it is difficult to identify these very quickly because of small
differences in naming conventions.) These compounds present a really interesting opportunity
for this project because they provide diversity in chemical structure, size, and type of molecules
that could potentially give a range of computational and experimental results. However, they
are all metabolites, many of which have already been used as excipients, and can potentially be
analyzed within classes to understand the nuances of excipient-protein interactions.
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4. Computational Modelling
4.1 Rationale for Using AutoDock

As described in Section 3.2, metabolites from Sigma Aldrich was used for screening through
computational modelling. There were three primary reasons for using these compounds: (1)
they were readily available for purchase for wet-lab experiments; (2) metabolites, particularly
ones that are endogenously found in the human body, are likely to be safer in clinical
application; (3) many metabolites have shown to increase protein stability. The list of these
compounds are in Exhibit A of the appendix. The next phase of this project involved developing
a computational modelling technique to understand excipient-protein interaction and
evaluating the compounds listed in Exhibit A to identify excipients for wet-lab experimentation.
Computational modelling is currently not used for formulation development in the biotech
industry. As such, there were no existing tools available for this particular need. This resulted in
two options for the project - to either develop an innovative new method to model excipient-
protein interaction or identify a novel application for existing modelling technologies. While an
entirely new modelling methodology would provide numerous benefits, including having
specific capabilities to address questions related to formulation development, it might not be
the best first approach. It would not only require time and resources that are beyond the scope
of this project but also would not effectively take advantage of the information derived from
existing methods. As a result, two different currently available modelling methodologies were
considered for this project - AutoDock Vina and molecular dynamics simulation. Section 2.4.3
describes in detail the inputs and outputs for each of these modelling systems.

The ultimate utility of a modelling tool to identify excipients for wet-lab experimentation comes
from its ability to meet the following criteria:

1. Input files are quickly generated
2. Easy to use
3. Modelling is fast
4. Modelling provides additional insight into excipient-protein interaction
5. Output can be quickly analyzed to identify excipients for formulation

The most important advantage of molecular dynamics simulation is in its ability to provide
atomistic level information on excipient-protein interaction. Residence time is the direct output
of molecular dynamics simulation and provides information on the amount of time an excipient
spends near the protein. But other variables can be indirectly calculated from this including
identifying the regions of the protein the excipient most closely interacts with and the binding
affinity at that region. In addition to this, concentrations of the excipient and the choice of
buffer can be specified leading to a more accurate representation of experimental conditions.
Lastly, although the structural conformation of the protein does not change in molecular
dynamics simulation, its surface does dynamically change, leading to a more meaningful insight
on excipient-protein interaction. However, despite these advantages related to point 4, it is
important to note that MD simulations typically only cover short timescales due to the
immense computational power they require. Thus it might be challenging to extrapolate the
nature of excipient-protein interactions. Furthermore, the business justification to pursue MD
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simulations at this point in development would be tough given its drawbacks in points 1-3 and
5. Developing accurate input files are extremely challenging as it requires developing force
fields for both the excipients and the protein. Arguably once force fields are developed for
excipients, they can be used in screening exercises for other proteins. However, the
development of accurate force fields are difficult, extremely time consuming, and will likely
require specialized resources.

AutoDock Vina was used in this project because of its ability to provide insight into an
excipient's propensity to interact with different parts of a protein through fast modelling,
relatively easy to develop input files, and easy to analyze output files. Although AutoDock Vina
has been typically used for screening small molecule drug candidates against a biological target,
it could potentially have a novel application in identifying excipients for formulation
development. As described in Section 2.4.3, the rate limiting step with AutoDock Vina is likely
the collection of SMILES structures for all of the excipients. However, once they are collected,
they can quickly be converted into pdbqt files for AutoDock Vina and be used in the future for
other proteins. It requires fairly minimal amount of other information, requires less
computational power than MD simulations, and most importantly, it is an effective tool for high
throughput screening. It also creates easy to analyze output files: binding affinities for the
different locations of interactions and the coordinates for those interactions.

Theoretically AutoDock Vina met all of the five modelling needs listed above; however, a small
computational test was performed to ensure that AutoDock Vina functions as expected.
Lysozyme is an enzyme that breaks down bacterial cell walls by enabling hydrolysis between N-
acetylglucosamine and N-acetylmuramic acid. The active pocket in lysozyme interacts more
favorably with sugars compared to other small molecules. Knowing this, two different small
molecules were tested against lysozyme. UDP-N-acetyl-alpha-D-muramate contains a sugar
component and was hypothesized to primarily have docking positions in the active pocket.
Methanesulfonic acid (MsOH) on the other hand was hypothesized to have non-specific
interaction with lysozyme. The results form AutoDock Vina confirm the hypothesis on the
expected behavior of MsOH and UDP-N-acetyl-alpha-D-muramuate. Based on this, AutoDock
Vina was used to study ASA2 and approximately 250 Sigma metabolites.
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4.2 AutoDock Output and Analysis
There are two main outputs from AutoDock: binding affinity and the coordinates of the binding
site for 20 different positions. Section 2.4.3.2 describes the methods that were used to analyze
binding affinity and to convert coordinates of binding sites into spread and footprint. Figure 17
below shows the results from AutoDock Vina for approximately 250 excipients against ASA2.

Spread Footprint
80000 100000 120000 140000 160000 0% 2% 4% 6% 8%

-2.5 2.5 -2 5
**0 <=MW<200

-3.5 -3.5 -VV

-. - 200 <=MW<500 U

-5.5 - -5.5 -

-6.5 - 500 <= MW <1000 -6.5 - 0

-7.5 - 1 -7.5 -
0 MW >=1000

-8.5 - -8.5 -

-9.5 - -9.5 -

Figure 16: Analysis of AutoDock Vina Results for 247 Excipients

Generally, binding affinity and footprint increase with the molecular weight of the excipients.
Molecular weight in this case can be used as a close approximation for the size of the molecule.
The larger the excipient, the greater its binding affinity with ASA2. This is likely due to the
greater number of non-covalent interactions it has with ASA2, including potentially a greater
number of hydrogen bonds. The larger the excipient, the more likely it is to cover a larger
surface area of ASA2, leading to a larger footprint. The molecular weight of the excipient does
not seem to influence the spread, indicating that the size of the excipient does not influence
the parts of ASA2 that interacts with.

4.3 Hypothesis on Impact of Selected Excipients on Protein

Using both quantitative analyses and visualization of ASA2's interaction with many of the
excipients using VMD helped generate the primary hypothesis form AutoDock Vina modelling.
Our hypothesis was that excipients with larger spread, high footprint, and high binding affinity
are likely to reduce aggregation. These excipients are likely to reduce antibody-to-antibody
interaction and therefore reduce aggregation.

While this hypothesis was used to guide excipient selection for wet-lab experiments, additional
hypotheses may be generated from AutoDock Vina results. For example, if there are particular
areas of the antibody that has a propensity for aggregation, then AutoDock Vina could be used
to identify excipients that specifically interact with those areas.
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4.4 Final Excipients Selected for Experiments

Excipients were chosen in order to experimentally test the validity of the hypothesis on the
AutoDock Vina results. As such the excipients shown in Figure 19 were chosen to be from each
of the four quadrants of the Spread versus Binding Affinity graph.

e Quadrant 1: High spread, low binding affinity
* Quadrant 2: Low spread, low binding affinity
* Quadrant 3: Low spread, high binding affinity
* Quadrant 4: High spread, high binding affinity

Spread Footprint
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Figure 17: Spread, Footprint, and Binding Affinity Profiles of Selected Excipients

Excipients that were above 500 Daltons were eliminated from wet-lab experiments. This is
roughly based on Lipinski's rule of five, of which one indicates that orally active small molecule
drug should not be larger than 500 Daltons. But in general, the larger the excipient, the tougher
it is to achieve necessary concentrations. It can also potentially impact the maximum possible
concentration of antibody in solution. In addition to this, some excipients were eliminated
because of the toxicity issues to conduct wet-lab experiments. Lastly, some excipients were
chosen (e.g., arginine) because they have previously shown to have a propensity to reduce
aggregation in proteins. A final list of excipients that were tested experimentally are shown in
Table 8.
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5. Wet-lab Experiments
5.1 Rationale for SEC, DLS, and DSF

Scientists currently rely on wet-lab experiments for formulation development. These
experiments are used to evaluate various attributes that are important in clinical effectiveness
and commercial viability of biologics. Some attributes like protein aggregation are important to
evaluate across all protein therapeutics and experiments that test for aggregation are
systematically performed for every drug. The degree to which some other wet-lab experiments
are conducted is dependent on the needs of the protein. For example, experiments related to
solubility or viscosity are more likely to be conducted for proteins that have issues related to it.
Overall wet-lab experiments are conducted for two reasons:

1. To identify the right conditions that meet the goals at each stage of formulation
development (i.e., pre-formulation, drug substance stabilization, and final formulation),
including identifying the appropriate excipients

2. To gather data for clinical and commercial specifications (e.g., aggregation, stability, and
shelf-life over lifecycle of the drug)

The goal of this project was to study the impact of 32 excipients on ASA2, particularly as it
results to protein aggregation. There are numerous experiments that can be conducted to
study protein aggregation. This project takes advantage of the high-throughput techniques
available at Amgen to understand protein aggregation from multiple perspectives across
thousands of design conditions. Section 2.4.4 explains in detail the methodologies used to
conduct size exclusion chromatography (SEC), dynamic light scattering (DLS), and differential
scanning fluorimetry (DSF). Table 10 below summarizes the design conditions for the
experiments. This section will cover in more detail the rationale behind choosing these
experiments and the key insights they add to understanding ASA2 aggregation. This section will
also further explain some of rationale behind key formulation design choices, including the
different concentrations of the excipients, incubation at 40C, and pH of solution.
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Table 10: Overview of Design for Wet-lab Experiments

Measurement Aggregation Protein size Melting Temperature

Total Number of 32 32 32
Excipients

Temperature 400C 400C 400C

Time Points TO, 1 week, 1 month TO, 1 month TO, 1 month

pH 3.5, 5.2, 7.5 3.5, 5.2, 7.5 3.5, 5.2, 7.5

Concentrations High, Low High, Low High, Low

Total Number of 576 384 384
Experiments

Size exclusion chromatography (SEC) is a standard, reliable, and relatively easy-to-use
experimental technique to identify the proportion of aggregates in a sample. A gel-based
filtration column is used to pass samples through and separate its components by size through
different flow rates. Smaller molecules (e.g., protein monomers, degraded protein components,
or excess excipients) penetrate the pores of the beads in the gel and follow a longer path,
leading to slower flow rates. Protein aggregates, on the other hand, are less likely to penetrate
the pores and will likely flow directly through the column. High-throughput SEC was conducted
at Amgen that enabled the screening of more than 1000 different formulation samples. In
addition to separating the ASA2 aggregates from the monomers, a built-in UV detection also
helped to quantitatively measure the proportion of the sample made up of these different
components: high molecular weight, main (aka monomer), and low molecular weight. This
output directly addressed the primary goal of the project - to understand the impact of each
excipient on the level of ASA2 aggregation. In addition, once the samples were set up in 96-well
plates, the high-throughput SEC set-up took approximately 1 hour to set-up and then it
automatically ran the different samples (2 plates at a time) at a pace of approximately 6
minutes per plate. The output from SEC showed UV absorbance at 280nm at different time
points. Area under the curve was integrated at the high molecular weight (HMW) peaks to
identify the proportion of aggregates in the sample. However, there are two challenges related
to SEC that are important to recognize. The first is that with a larger number of samples, the gel
filtration column itself may be degraded over time and may impact the results. The second is
that aggregates that are insoluble and settle to the bottom of the plate are not measured
through this process.
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Dynamic light scattering (DLS) is another commonly used technique in the analysis of protein
aggregation. DLS provides information on the polydispersity of a sample and the hydrodynamic
radius of its components. Similar to the SEC, DLS can be done in a high-throughput manner
using the DynaPro Plate Reader by Wyatt Technology at Amgen. This allowed us to run almost
800 formulation samples at a pace of approximately 2 hours per 96-well plate (~2 minutes per
sample). DLS captures intensity of scattered light from a sample over time and uses
autocorrelation to provide outputs such as the hydrodynamic radius and polydispersity. While it
is fast and easy to use, it is more sensitive to large particles and may produce less reliable
results in a heterogeneous sample (Chaudhuri 2014). DLS can also be used to detect the
hydrodynamic radius of the ASA2 monomer, giving insight into the level of compactness of the
protein and by extension, to its stability. Excipients that enable the protein's native, more
compact conformations, have been shown to reduce aggregation; while, excipients that lead to
an expansion of the native state have been shown to increase aggregation (Kendrick 1998).

Differential Scanning Fluorimetry (DSF) provides information on the protein's thermostability
(Chaudhuri 2014). SYPRO Orange, a fluorescent dye that preferentially binds to hydrophobic
regions of a protein, was added to each ASA2 formulation, including the controls. Since the
hydrophobic regions of ASA2 are typically located in the interior, like most other antibodies, the
dye was not able to bind to these regions and its fluorescent signals were instead quenched by
the aqueous buffer (Chaudhuri 2014). However, as the temperature of the sample rises over
time, the protein begins to unravel and lose its secondary, tertiary, and quaternary structures.
This exposes the hydrophobic regions and results in higher fluorescent readings as SYPRO
Orange binds to these molecules. The curve produced by the change in fluorescence over
increasing temperature can be used to find melting temperature (Tm) of the protein. Typically,
more stable proteins are shown to have higher melting temperature and smaller aggregation
rates. Likewise, structures of less stable molecules begin to unravel at lower temperatures and
expose hydrophobic regions that have a propensity for aggregation in aqueous solution
(Chaudhuri 2014). Since all of the ASA2 formulation samples were incubated at 400C, DSF
provides insight into excipients that reduce aggregation by increasing the thermostability of the
protein.

In addition to determining the type of experiments to conduct, decisions were also made
regarding experimental design factors based on feedback from Amgen's formulation scientists,
MIT advisors, and secondary research. One of the first decisions that was made was on pH. This
is an important decision point in traditional formulation development since pH plays a critical
role in the stability of the protein. Changes in pH can change the protonation states of the
amino acid residues in the protein, leading to the potential disruption of some of the hydrogen
bonds and electrostatic interactions. This can then result in changes to the secondary, tertiary,
and quaternary structures of ASA2, destabilization of the native conformation, and increase in
aggregation. While in the case of formulation development, a pH that leads to increase in
stability is identified, the goal for this project was to test pHs that destabilize the protein. ASA2
is a fairly stable antibody at pH 5.2 and one of the concerns of this project was that it might be
difficult to observe the impact of excipients if the antibody is stable regardless. Therefore, ASA2
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was also tested in pH 3.5 and pH 7.5 buffers. These two pHs were theoretically selected to help
destabilize ASA2 and understand the impact of excipients in continuing to prevent aggregation.

As a result of testing each excipient-ASA2 formulation sample in three different pH conditions
(pH 3.5, 5.2, 7.5), a decision also had to be made regarding the buffers for each pH. The goal of
this experiment was to focus on the impact of only the excipients on the protein, to the extent
possible. So it was necessary to have the same buffer across all of three pH samples. Based on
feedback from an Amgen scientist, a 10mM glutamic acid+10mM sodium phosphate buffer was
used. The benefit of using glutamic acid and sodium phosphate was that the pH of the buffer
could be adjusted for the most part without using other acids and bases for titration. For the
most part, pH was adjusted by varying the volume ratio of glutamic acid to sodium phosphate
to make up the three buffers.

The results from pH 3.5 experiments were not used for final analysis in this project. ASA2
samples were dialyzed directly into the respective pH 3.5, pH 5.2, and pH 7.5 buffers. However,
the excipient stock solutions had to be titrated to the appropriate pH because of the strong
influence of some of the excipients on the pH of the buffer. Titration was done with 5N HCI, 1N
HCI, 1ON NaOH, and 1N NaOH. While ASA2-Control samples exhibited an increase in
aggregation at 1 week in pH 3.5, ASA2 samples with excipients were for the most part
completely denatured within 1 week. While this maybe due to lack of favorable excipient-
protein interaction at pH 3.5, it is likely due to the addition of HCI during the titration steps. The
hypothesis that the results from the pH 3.5 were confounded because of HCI was further
validated using a small experiment. The experimental set-up and results are shown in Exhibit B
of the Appendix. Thus the analysis of the results from wet-lab experiments are focused on pH
5.2 and pH 7.5 samples.

The concentration of excipients typically plays an important role in the excipients' ability to
affect aggregation of the protein. As such, a high concentration and a low concentration were
tested for every excipient with ASA2. The motivation behind the high concentration was to
understand the impact of excipients on ASA2 when they are in far excess by moles compared to
ASA2. However, the concentration of each excipient was constrained by its maximum solubility.
For example, Xanthine, with the lowest solubility among the 32 excipients tested, was at most
on a 1:1 stoichiometric ratio with ASA2. Alanine, on the other hand, had the highest solubility
and at that concentration had a stoichiometric ratio of -70,000:1 with ASA2. Given this large
difference and the difficulties with arbitrarily choosing one concentration, the high
concentration of the stock solution was determined to be at 80% of the maximum solubility of
each excipient. The final excipient-ASA2 formulations contained half of this concentration since
125 tL of the excipient stock was added to 125 pl of ASA2. The low concentration stocks were
chosen to be approximately at 20% of the molarity of high concentration stocks. The significant
difference between the high and low concentrations of excipients were tested to understand
the influence of excess concentration of excipients on ASA2's stability and aggregation.

In addition to pH, temperature of the sample also plays a critical role in protein aggregation and
thermostability. All ASA2 was incubated in 40*C for one month. Since ASA2 is naturally a fairly
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stable molecule with a low propensity for aggregation, the goal of incubating it at 400C was to
potentially disrupt that stability and understand the impact of the excipients. In addition,
incubation at 400C could also provide greater insight into excipients that specifically improve
the thermostability of ASA2, but may not necessarily have an impact on colloidal stability.

The goal behind testing a large sample of excipients and a variety of experimental design
factors was not only to better understand each excipient's relationship with ASA2 but also to
understand trends across excipients compared to the computational data. Section 5.2 provides
the results from the wet-lab experiments and Chapter 6 discusses the comparison between
wet-lab results and computational results. The ability to run high-throughput wet-lab
experiments played a critical role in being able to explore so many formulation designs
efficiently.

5.2 Results and Analysis

The results from SEC, DLS, and DSF for all of the formulation samples at pH 5.2 and pH 7.5 are
shown in Figures 20 - 27 below. Unfortunately, since ASA2 is a fairly stable molecule, there are
no notable trends across all of the excipients. However, a few interesting results do emerge
from these experiments. There are more excipients that show higher aggregation of ASA2 in the
high concentration samples compared to the low concentration samples across both PH.
Interestingly, many of the excipients that lead to higher aggregation are also acids and show
higher aggregation at pH 5.2 compared to pH 7.5. In light of the results from the HCI
experiments shown in Exhibit B of the Appendix, it is possible that a higher concentration of
protonated acids interacts with ASA2 differently and leads to an increase in aggregation.
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Figure 18: Change in ASA2 Aggregation Over One Month at pH

Thefigures show a change in aggregation from baselinefor ASA2 with high and low concentrations of
excipients at pH 5.2. The yellow line indicates the level of aggregation at TO. The green dots and pink
circles indicate change in aggregation from the baseline for two replicates at 1 month. The excipients
highlighted in dotted lines are ones that showed the most notable level of change from baseline.
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Figure 19: Change in ASA2 Aggregation Over One Month at pH

The figures show a change in aggregation from baseline for ASA2 with high and low concentrations of
excipients at pH 7.5. The yellow line indicates the level of aggregation at TO. The green dots and pink
circles indicate change in aggregation from the baselinefor two replicates at 1 month. The excipients

highlighted in dotted lines are ones that showed the most notable level of change from baseline.
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Figure 20: Change in Hydrodynamic Radius of ASA2 Over One Month at pH 5.2

Thefigures show a change in ASA2 radiusfrom baseline for formulations with high (top graph) and low
(bottom graph) concentrations of excipients at pH 5.2. The yellow line indicates the protein radius at TO. The
green dots and pink circles indicate a change in radius at 1 month for two replicates. The excipients
highlighted in dotted lines are ones that showed the most notable level of change from baseline for both
replicates.
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Figure 21: Change in Hydrodynamic Radius of ASA2 Over One Month at pH 7.5

Thefigures show a change in ASA2 radius from baseline for formulations with high (top graph) and low
(bottom graph) concentrations of excipients at pH 7.5. The yellow line indicates the protein radius at TO. The
green dots and pink circles indicate a change in radius at 1 month for two replicates. The excipients
highlighted in dotted lines are ones that showed the most notable level of change from baseline for both
replicates.
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Figure 22: Change in Melting Temperaturefor ASA2 Over One Month at pH 5.2

The figures show a change in the melting temperature (Tm) for ASA2 from baseline for formulations with
high (top graph) and low (bottom graph) concentrations of excipients at pH 5.2. The yellow line indicates
the melting temperature at TO. The green dots and pink circles indicate a change in the melting
temperature at 1 month for two replicates. The excipients highlighted in dotted lines are ones that
showed the most notable level of changefrom baseline for both replicates.
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Figure 23: Change in Melting Temperaturefor ASA2 Over One Month at pH 7.5

Thefigures show a change in the melting temperature (Tm) for ASA2 from baseline for formulations

with high (top graph) and low (bottom graph) concentrations of excipients at pH 7.5. The yellow line

indicates the melting temperature at TO. The green dots and pink circles indicate a change in the melting

temperature at 1 month for two replicates. The excipients highlighted in dotted lines are ones that

showed the most notable level of changefrom baseline for both replicates.
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Change in Aggregation vs. Melting Temperature vs. Radius (1mo - TO)
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Figure 24: Aggregation versus Melting Temperature versus Protein Radius at pH 5.2

The figures show a change at 1 month compared to baseline for all ASA2 formulations for the first run
(or replicate) at pH 5.2 for high (top graph) and low (bottom graph) concentrations of excipients. The
change in aggregation from baseline is plotted in the y-axis, the change in melting temperature is
plotted in the x-axis, and the change in protein radius is represented by the size of the circles. Each color
represents a different ASA2 formulation.
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Figure 25: Aggregation versus Melting Temperature versus Protein Radius at pH 7.5

The figures show a change at 1 month compared to baseline for all ASA2 formulations for the first run

(or replicate) at pH 7.5 for high (top graph) and low (bottom graph) concentrations of excipients. The
change in aggregation from baseline is plotted in the y-axis, the change in melting temperature is
plotted in the x-axis, and the change in protein radius is represented by the size of the circles. Each color

represents a different ASA2 formulation.
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6. In-silico and In-vitro Data Comparison & Analysis
6.1 Size Exclusion Chromatography Results versus Computational Results

The percentage of aggregates in each formulation sample was compared against the spread,
footprint, and binding affinity. The hypothesis at the start of the project was that excipients
that demonstrate a high spread, footprint, and binding affinity are the most likely to reduce
aggregation. These excipients could cover the surface of ASA2 with favorable interactions,
stabilizing the antibody and preventing the antibodies from interacting with each other.
However, this trend was not observed. It was difficult to note any significant observations since
most excipients did not seem to have an impact on ASA2 aggregation.
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However, there are trends that would be interesting to explore further. Figure 28 above, shows
aggregation at pH 7.5, high concentration of excipients compared against binding affinity,
footprint, and spread. Interestingly, the few excipients that have led to an increase in
aggregation tend to have a higher binding affinity and low footprint. These are likely excipients
that act more like small-molecule drugs than an excipient. Further analysis to identify the areas
of interaction between ASA2 and these excipients using AutoDock Vina may offer insight into
the reason for increased aggregation.

6.2 Dynamic Light Scattering Results versus Computational Results

Data from DLS was used to analyze the hydrodynamic radius of protein monomer with the
hypothesis that a protein in a more compact, baseline-like state has more colloidal stability and
that sample is likely to have lower aggregation. Based on the computational results, it was
expected that excipients that have higher binding affinity, footprint, and spread are likely to
stabilize ASA2 more by surrounding the antibody with favorable interactions. However, there
are no correlations observed between the hydrodynamic radius of ASA2 from DLS and the
computational results. Figure 29 shows results for pH 7.5, high concentration samples.
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6.3 Differential Scanning Fluorimetry Results versus Computational Results

The melting temperature of ASA2, derived from DSF, indicates its thermostability. Excipients

that lead to higher melting temperature increase ASA2's stability and are likely to show less

aggregation after incubation at 400C. Excipients that lead to a lower melting temperature

compared to control are likely destabilizing ASA2 and may result in increased aggregation after

incubation at 40*C. Given the relatively high stability of ASA2-Control there were no excipients

that demonstrated a significant increase in melting temperature. However, there are a few

excipients that decreased the melting temperature of ASA2. Figure 30 shows the results for pH

7.5, high concentration samples. Similar to the trends observed with SEC, excipients that have

resulted in a lower melting temperature have more drug-like properties - lower footprint and

higher binding affinity. Further analysis on AutoDock Vina should be done to identify the

specific areas of excipient-protein interaction for these formulations.
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6.4 Conclusions
6.4.1 Current Challenges and Areas for Improvement with AutoDock Vina

AutoDock Vina can potentially serve as an effective tool to model excipient-protein interaction
because it is fast, easy to use, requires relatively low computational power, inputs are relatively
easily generated, and outputs are relatively straight-forward to analyze. However, the biggest
challenge with AutoDock Vina is understanding its capabilities and limitations in effectively
modelling excipient-protein interaction. AutoDock is a molecular docking tool that is intended
to predict non-covalent binding of small molecule ligand to macromolecules (Trott 2010). Its
application has been most successful in screening small molecule drug candidates against a
known protein target and target site, to identify leads in the drug development process (Trott
2010). It can also be used to predict the bound conformation of known ligand-macromolecule
binders (Trott 2010). Thus its application in modelling excipient-protein interaction is novel and
includes numerous challenges.

The search space provided for ASA2 in AutoDock Vina is larger than the typical search spaces
for docking sites. In initial tests of 190 protein-ligand complexes by AutoDock Vina creators, the
search space was 22.4A in the x,y,z dimensions (Trott 2010). The size of this search base was
based on the following logic:

e Initial sizes of each dimensions were based on minimal rectangular parallelepiped that
covered the bound ligand structure (Trott 2010)

e The sizes were increased by 10A in each of the three dimensions and then an additional
5A was added to one of the directions of each dimension (Trott 2010)

o The increase by 10A ensured that the ligand has enough space to rotate in and
the addition of 5A in a randomly selected direction for each dimension
prevented any bias from centering the search space on the binding location
(Trott 2010)

* Ultimately each dimension was increased to 22.5A to maintain compatibility with
previous tests performed on AutoDock and to provide enough room for ligand
movement (Trott 2010)

AutoDock Vina also recommends that the search space be no larger than 30A in each dimension
to make it easier for the program to search for and find the global minimum ("AutoDock Vina
Manual" 2010). However, for ASA2, a search space with the size 144A, 117A, and 136A was
used in x,y,z dimensions, respectively. This accounts for the full size of the antibody and an
addition of 10A in each direction. The motivation behind using a large antibody is because the
large antibody more closely simulates the type of protein therapeutics that are on the market
and that Amgen works with. The reason to use its full size for AutoDock Vina is because it
provided information on preferential binding sites across the whole antibody and could
potentially be used to differentiate excipients that bound more strongly to certain parts of the
antibody. However, since the search space was large, it is not clear that binding positions that
represented the global minimum were actually found. Furthermore, the nondeterministic
algorithm that guides the search process in AutoDock Vina led to large variations in each run,
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that despite having numerous runs, the net results may be a wash. In order to address this
issue, it would be helpful to consider the following steps for future simulations on AutoDock:

1. Identify hotspots on the antibody that are prone to aggregation and focus the search
space to those areas

2. Increase exhaustiveness of AutoDock Vina search as this linearly increases the time
spent on each search and increases the chances of finding the global minimum
("AutoDock Vina Manual" 2010)

a. Although this was tried in this project with no noticeable difference in the
results, it is possible that it might help in combination to the other
recommendations provided here

3. User smaller proteins (e.g., lysozyme) for this proof of concept study
4. Results from three different runs for each of the three conformations (a total of 9 runs

per excipient-ASA2 pair) were used in this project. However, it might be helpful to do
more runs, particularly for larger search spaces

Another challenging aspect with using a large, complex antibody like ASA2 is determining the
conformations that should be used in modelling. AutoDock Vina keeps the macromolecule
static and rigid while the ligand has some conformational flexibility. Three different
conformations of ASA2 was used in this project based on findings from Clark 2013. However,
this project did not use the functionality in AutoDock Vina to identify certain side chains to be
flexible during docking ("AutoDock Vina Manual" 2010). The combination of these two factors
like significantly impacted the AutoDock Vina results. However, the conformations used for
modelling may not actually represent the conformations ASA2 takes in the presence of those
excipients at different pHs and 40C incubation, thus significantly altering the results. As a proof
of concept study, it would be helpful to do the following:

1. Choose a smaller protein with fewer degrees of flexibility related to conformational
changes; if possible identify target sites within the protein for the search space

2. Utilize AutoDock Vina's functionality to provide flexibility to side chains during docking

Another important factor that needs to be further reviewed is the protonation states of ASA2
and the excipients. pH plays an important role in determining the stability of the protein, its
propensity for aggregation, and its interaction with excipients (Chaudhuri 2014). Currently, the
only way to account for pH in AutoDock Vina is by altering the protonation states and charge
distribution of molecules. For this project, protonation states of ASA2 and the excipients were
all based on a pH of 7.0, even though experimentally pH 3.5, 5.2, and 7.5 were tested. Given the
important role of pH, Autdock Vina should be tested again with excipient-protein combinations
with protonation states that accurately matches the pH at which the solution will be
maintained in.

AutoDock Vina also does not take into account the impact of water or other buffers on the
excipient-protein interaction. While this may not present as a challenge in the identification of
small-molecule drug targets due to the need for leads that have a strong binding affinity to the
protein, it could become problematic in finding excipients to prevent aggregation. The binding
affinity for excipients is and likely should be less than that of a small molecule drug target to an
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active site. However, the current modelling capabilities of AutoDock Vina do not capture the
complexity of the interaction between water/buffer and ASA2 and water/buffer and excipients.
The level of preferential interaction of water wit the excipients or the protein could have a
considerable impact on the wet-lab results observed. One possible way to mitigate this risk is
by using third-party add-ons like WaterDock to understand preferential binding of the protein
to the ligand/excipient instead of water (Ross 2012).

But ultimately there are two important disadvantages to AutoDock Vina that might prevent its
use in identifying excipients to reduce protein aggregation. The first is that AutoDock Vina
models ligand-macromolecule interaction in a temperature-independent fashion (Trott 2010).
However, temperature plays an important role in protein aggregation. Higher temperatures
typically lead to greater protein instability resulting in multiple starting points for protein
aggregation, including thermodynamic instability, protein denaturation, hydrophobic
interaction, greater movement and physical interaction of proteins (Wang and Roberts 2010).
AutoDock Vina currently does not provide tools to model the impact of temperature on the
excipient and protein structures. The second is that AutoDock Vina ultimately models the
interaction of a small molecule and a macromolecule and it might be too difficult to translate
the findings from this interaction to their behavior in solution. It is possible that the AutoDock
Vina results might be more helpful for formulations that are lyophilized (Tarar 2013). But in
general since the industry is moving towards liquid formulation and thus it is important to have
a computational modelling tool that would be effective in this setting.

6.4.2 Current Challenges and Areas for Improvement with Wet-lab Experiments

Unlike the methods for computational modelling, the methods for wet-lab experimentations to
identify protein aggregation and stability are pretty well established. However, there are still
challenges that emerged during the design and implementation phase of high-throughput
experimentation conducted in this project. Addressing these issues may help provide more
confidence and reliability to the results from the wet-lab experiments and its relationship to the
computational results.

Approximately 1344 experiments were conducted in total, not including the study of control
samples. Of all the different factors that are listed in the table above, there are three design
choices that likely had the most direct impact on the outcome: concentrations and pH. The high
concentrations of the excipients were determined based on 80% of the maximum solubility of
each excipient in solution and for the low concentration, it was 20% of the high concentration.
The actual molarity of each of the excipients tested is listed in Table 8. However, it is possible
that at the high concentration, the stoichiometric ratio of excipients to protein is too high to
see any differences in results for the most part and at the low end, it is too small, especially for
some excipients. It is also challenging to compare the results across different excipients given
the confounding factor of different concentrations for each excipient. Thus it would be helpful
in future experiments to determine the concentration of excipients based on stoichiometric
ratios that are the same across all the excipients.
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The second design challenge is determining the pHs for experimentation. Since ASA2 is a
natively stable antibody at pH 5.2, pH 3.5 and pH 7.5 we tried to destabilize it and test the
additional benefit of the excipients. The other two experimental pHs (3.5 and 7.5) were
determined based on feedback from Amgen scientists and some publications (Alekseychyk
2014). The motivation for selecting pH 3.5 and pH 7.5 was that it would provide conditions to
destabilize ASA2 and promote aggregation without completely destroying the antibody.
However, addition of certain excipients significantly changed these pHs immediately and
individual samples needed to be titrated back to the appropriate pH. Furthermore, titration
with HCI, especially in acidic conditions (i.e., pH 3.5) seems to have a strongly negative impact
on ASA2. Due to the confounding results from HCI, the results from the entire set of
experiments conducted at pH 3.5 could not be used for analysis in this project. Lastly, for ASA2,
pH 7.5 does not seem to have significantly destabilizing effect compared to pH 5.2 in this
project. The design process should take into account these challenges and perform empirical
tests first to identify the appropriate pH conditions for experimentation.

The third design challenge is related to collecting data for replicates. There were no replicates
designed in each of the 96-well plates (except for the controls) in the current methods for this
project. This was because the goal of the project was to observe trends across excipients, the
thought process that replicates can be independently set up in new plates, and because of time
and resource constraints. A replication of all of the experiments were conducted, though only
for some time points, across all of the samples, in new 96-well plates to verify the findings from
the first run. However, there was too much variability introduced with setting up the second set
of samples from the degree of pipetting to small differences in concentration of the protein and
changes in the SEC column. Likely a better design approach for the next set up experiments is to
build in replicates of three within the same run and plate for each sample.

In addition to these design challenges, there were also numerous challenges related to the set-
up and execution of the wet-lab experiments. The pH of the samples not only presented a
design challenge, but a setup challenge as well. Each of the 192 unique samples (32 excipients *
2 concentrations * 3 pHs), needed to be individually titrated to a pH that was close to the target
pH. This not only increases the opportunity for error, but adds titration buffers at various
concentration for each excipient, and changes the concentration of excipients. All of these
factors could impact protein aggregation and stability and ultimately confound the results on
the impact of the excipient itself. Each individual excipient solution was also developed by
manually weighing out small quantities of the excipient and dissolving it in buffer. While to the
extent possible, the amount weighed out was close to the target amount and was tracked,
there is also room for error in this process given the small quantities. Lastly, given the large
number of samples and high levels of aggregations in some samples (especially in pH 3.5), the
SEC column's filtration property eroded and had to be replaced twice in the middle of the
experiments, additional addition variability to the results.

Despite all of these challenges, likely the most important factor leading to inconclusive results is
the fact that ASA2 is a fairly stable antibody that did not show a significant difference in
aggregation at pH 5.2 and pH 7.5, even without any additional excipients, and after one month
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of incubation in 40*C. Thus, with the exception of few excipients that have led to increases in
aggregation, there are no clear differences from the baseline that is observed. Selecting a
protein with a propensity for aggregation will likely produce more interesting results and insight
into if there is a relationship between the computational and experimental analysis.
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7. Next Steps & Recommendations

This project accomplishes two major steps in formulation development:
1. It serves as a starting to point to develop computational models that can do high

throughput screening of excipients virtually
2. It identifies databases of compounds that could be used for both computational and

wet-lab experiments
While the latter is the primary output from this project that could immediately add value to
formulation scientists, a majority of the discussion in this section will be focused on
recommendations to further test the role of computational modelling, specifically AutoDock
Vina, in formulation development. Harnessing the power of computational modelling to test
hundreds and thousands of formulation designs is a truly innovative way to develop novel
formulations in a faster and more cost-effective manner. Furthermore, computational
modelling has the power to provide insight into excipient-protein interaction at an atomic level,
leading to a greater understanding of science and better drug development in the future. The
benefits related to computational modelling is only going to become more important as the
challenges related to formulation development become more urgent. There are three industry
trends that are likely to further amplify the need for a robust high-throughput computational
model to select excipients. The first is related to new formulation challenges that will likely
come with the introduction of new modalities of protein therapeutics. The second is from re-
formulation needs of currently approved protein therapeutics due to advancements in delivery
devices and increased patient preference for convenient liquid or oral formulations. Lastly,
biosimilars may sometimes require new formulations that match the functionality of the
original drug due to delayed formulation patent expiry. The current reliance on DOE, trial-and-
error, platform formulations, and empirical expertise may at best exacerbate problems related
to the time and cost of drug development and at worst, may not provide a sufficient
formulation at all. Developing a high-throughput computational model has significant potential
to improve this process, that at its core has not changed over the last couple decades.

This project pursues AutoDock Vina as a way to computationally model excipients against a
target protein, ASA2. A docking tool that has traditional been used to screen small molecule
drug candidates against the active site in macromolecules, AutoDock Vina was used in this
project to understand the degree of non-specific interaction between each excipient and ASA2.
The ultimate goal of this endeavor was to screen for excipients that would reduce ASA2
aggregation or increase its stability, as measured through SEC, DLS, and DSF. However, results
from this first stage of development do not show a significant correlation between
computational results and experimental results. While it is possible that AutoDock Vina is not
an appropriate tool to screen for excipients, its value in this process can not yet be missed.
There are numerous confounding factors that are discussed in Section 6.4 that could be
affecting the outcomes and should be explored further to definitively establish AutoDock Vina's
value in this process.



Based on the findings and lessons learned through this project, Figure 31 summarizes the
recommended next steps to do a final assessment on the role of AutoDock Vina in screening for
excipients that help prevent aggregation and increase stability.

Phase 1: Phase 3:

Identify relevant protein toPrfmcmpatna
test computationally and Analsi Aihths

experimntallyexcipients using A

e xermetalyAutoDock Vina

Figure 29: Overview of Recommended Project Approach

The first phase of this project should focused on identifying an appropriate protein to test
computationally and experimentally. Computationally the protein should be small with only a
few or no structural conformation changes. ASA2, tested in this project, is a large antibody with
~1314 amino acids, molecular weight of ~150 kD, and surface area of ~62,00OA. In addition to
this, ASA2 can also take on various structural conformations because of the flexibility provided
by the two hinge regions that serve as the attachment between each of the Fab arms and the
Fc (Clark 2013). This is an especially important factor because the structural conformation of
ASA2 strongly impacts the parts of the antibody that are exposed and can interact with the
excipients. Experimentally, the protein should have a known propensity for aggregation at a
defined pH and within a one-month time point at 40C or room temperature. One of the
challenges with this project was that since ASA2 was a fairly stable molecule with very low
aggregation, it was by nature difficult to identify excipients that reduced it even further. If a
protein is selected that has a high propensity for aggregation, then it would also be helpful to
collect information on any active sites that serve as the point of aggregation. Lastly, it would
also be helpful to select a protein with tendencies for aggregation, that also has a known
formulation to prevent it. This will help in setting up the experiments in the second phase of
this project.

Lysozyme might potentially be good option to consider for this project. It is a relatively small
protein, especially compared to ASA2. It has 129 amino acids, weighs about ~14 kD, and has a
surface area of 6000A ("Product Information: Lysozyme" 2017, Gregory 1995). Initial
computational tests, as described in Section 4.1, shows that AutoDock Vina can differentiate
between site-specific interactions and non-specific interaction for different excipients even
when a large search space that covered the entire molecule was provided. Furthermore,
lysozyme is available to be purchased commercially from many sources, including Sigma-Aldrich
("Product Information: Lysozyme" 2017). Lysozyme's propensity for aggregation under different
experimental conditions needs to be further validated. However, initial journal reviews indicate
that aggregation is a problem with lysozyme.

The second phase of this project should focus on wet-lab experiments. Similar to the
experiments conducted in this project, SEC, DLS, DSF, and other potentially interesting
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experiments should be conducted with clear design criteria. Data should be collected at TO, 1
week, 2 weeks, and 1 month across all of the different different experiments. Ensure that at
least 3 replicates and controls are built in. Isolate lysozyme in a buffer at a target pH and
eliminate other excipients. This will be helpful in understanding the effects of the excipients
and minimize confounding variables. Also ensure that the final concentration of lysozyme used
is high enough to meet the requirements for SEC, DLS, and DSF, and also high enough to enable
aggregation. Lastly, with regards to the excipients, selection should be based on literature
search and trial-and-error. Although this only replicates current processes for identifying
excipients, hopefully it will ultimately help to evaluate AutoDock Vina. Ideally select three
excipients that increase aggregation, three excipients that reduce aggregation, and three that
have no effect. Evaluate excipients in three concentrations (high, medium, low), based on
stoichiometric ratios and maintain these ratios across all of the excipients. The highest
concentration should roughly cover the surface of the protein. Given the difficulty in
preparation of the excipient samples described in Section 6.4, samples should be created in
larger volumes and titrated to the target pH without HCI. Excipients should only be added to
the lysozyme solution after this step is done. The list of excipients in Exhibit A of the Appendix
from Sigma Aldrich that were evaluated for this project would be a good place to start.

Once the wet-lab experiments are completed or while waiting for the 1-month time point,
computational analysis using AutoDock Vina should be done. Ensure that the protonation states
and charges on lysozyme and the excipients match experimental conditions. The search space
should be approximately 10A larger in each dimension compared to the size of lysozyme. The
exhaustiveness parameter in AutoDock Vina should also be explored further to determine if it
has an effect on the outcome. Run AutoDock Vina at least 3 times for each excipient. If the
results are very different, particularly as it relates to the spread, then more times may be
needed. Water dock should be performed if necessary. If there are active sites that induces
aggregation, then it would be helpful to do AutoDock runs with specifically those areas as the
search space. The AutoDock Vina results should be analyzed based on the methods described in
this project and visually using VMD or other tools.

If these results from AutoDock Vina correlate with wet-lab outcomes, then the model should be
evaluated using two different lenses. The first is a more qualitative evaluation of the additional
scientific insight offered by AutoDock Vina on the excipient-protein interaction. Often the
business impact of such knowledge is difficult to quantify immediately, but may overtime be
critical in advancing formulation development and drug development. The second is a
quantitative evaluation of cost/benefits associated with continued development of AutoDock
Vina in excipient selection. It is possible that even if strong trends are realized in this project,
there might still not be a business justification to continue to pursue this model if there are too
many criteria that need to be satisfied for the model to produce useful results. The project
described in this section could also help conclusively rule out the value of AutoDock Vina in
excipient selection to reduce aggregation and increase stability.

In addition to the project on evaluating the role for AutoDock Vina in excipient selection, there
are several other projects that would be worth pursuing based on the results from this project.
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It would be interesting to pursue additional studies to evaluate the role of HCI in protein
degradation. There are some studies that already explore this area a little, but it would be
especially valuable to pursue this topic of research in comparison to other acids that are used
for titration. In addition to wet-lab experiments, computational modelling could also provide
insight into this degradation process. Another interesting area that could be particularly helpful
in systematic formulation development is building a curated database of excipients that are
used or have been tested with different types of therapies, along with a summary of the
function they have served in formulation, if they ae listed in the lID, etc. Currently this
information is difficult to find and not collected or shared systematically. However, the process
of formulation development could potentially be more efficient by the addition of easy-to-use
database with regularly updated information on different excipients.

Formulation development is a critical area in the drug development process. It enables a
therapeutic protein candidate to become an effective commercial drug by ensuring the follow
attributes in liquid or lyophilized form:

* Maintaining stability
* Preventing aggregation
* Modifying the viscosity to meet dosage requirements
* Ensuring biocompatibility
* Enabling compatibility with delivery device
* Providing a long shelf-life

While there have been many advances overall in the experimentation process (e.g., high-
throughput automated equipment, advanced computational algorithms for analysis of the
data), the core process that is used for formulation development has not changed notably.
After decades of experience, platform formulations were developed that serve as the starting
point for certain types of protein. While this may still be an effective option for those proteins,
introduction of new modalities and delivery devices will bring out new formulation challenges
that might force scientists to go through extensive trial-and-error process. This project serves as
a first step to highlight two potential areas for development that could help address impending
formulation challenges. The first is to develop an easy-to-use comprehensive database that is
systematically updated to include information on excipients, their function, and benefits in
formulation, and shared with the entire formulation development for future use. The second is
continuing the pursuit of developing computational modelling that can not only do high
throughput screening for excipients to address formulation needs, but also reveal insight into
excipient-protein interaction.
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Appendix

Exhibit A: Metabolites from Sigma-Aldrich

( )-Mevalonolactone -97 %
(titration)
2-Butenoyl coenzyme A
lithium salt 90% (HPLC)
2-Ketobutyric acid 99 %

2,3-Diphospho-D-glyceric
acid pentasodium salt
2'-Deoxyadenosine 5'-di-
phosphate sodium salt
2'-Deoxycytidine 5'-
diphosphate sodium salt

96%
2'-Deoxycytidine 5'-
monophosphate sodium salt
Sigma Grade, 98%
2'-Deoxycytidine 5'-
triphosphate disodium salt

95%
2'-Deoxyguanosine 5'-
triphosphate sodium salt
hydrate 96% (HPLC)
2'-Deoxyuridine 5'-
monophosphate disodium
salt Sigma Grade
3-Hydroxy-DL-kynurenine

3-Hydroxyanthranilic acid

3'-Dephosphocoenzyme A
290% (HPLC)

4-Hydroxyphenylpyruvic acid
98%

D-Mannose 6-phosphate
sodium salt 95% (enzymatic)
D-Ribulose 1,5-bisphosphate
sodium salt hydrate ~90 %
D-Ribulose 5-phosphate
sodium salt ~90 %
D-Sorbitol 98%

D-Sphingosine from bovine
brain -99 % (TLC)
D-Xylulose

Decanoyl coenzyme A
monohydrate 390 %

Desmosterol 284% (GC)

Dihydrouracil

Dihydroxyacetone phosphate
dilithium salt 293%
(enzymatic)
Dihydroxyacetone phosphate
hemimagnesium salt hydrate

95% (TLC)
Dimethylallyl pyrophosphate
triammonium salt
DL-3-Hydroxy-3-
methylglutaryl coenzyme A
sodium salt hydrate 290%
(HPLC
DL-b-Aminoisobutyric acid

4-Imidazoleacrylic acid 399 % DL-b-Hydroxybutyryl

L-Tyrosine reagent grade 398

%(TLC)
L-Valine reagent grade 398%

(TLC)
L-Xylulose ~95 % syrup

L(+)-Lactic acid -98 %

Lanosterol 93%, powder

I Lauroyl coenzyme A lithium
salt 90-95 %

Leukotriene B4 -100 Vg/mL
in ethanol, 97%

Linoleic acid 99%

Linoleoyl coenzyme A lithium
salt 85%

Lithium acetoacetate t90%
(enzymatic)

Lithium carbamoylphosphate
dibasic hydrate 85%

Malonyl coenzyme A lithium
salt 90% (HPLC)
Methylmalonyl coenzyme A
tetralithium salt hexahydrate
90-95 %

Methylmalonyl coenzyme A
tetralithium salt hydrate

90% (HPLC)

myo-Inositol 99%



5-Aminoimidazole-4-
carboxamide-1-b-D-
ribofuranosyl 5'-
monophosphate ~95 %
5-Aminolevulinic acid
hydrochloride "98 %

5-Phospho-D-ribose 1-
diphosphate pentasodium
salt
5-Pregnen-3b-ol-20-one 198

a-D-Galactose 1-phosphate
dipotassium salt
pentahydrate Type 11 398 %
a-D(+)Mannose 1-phosphate
sodium salt Sigma Grade

Acetoacetyl coenzyme A
sodium salt hydrate 90-95 %

Acetyl coenzyme A sodium
salt "95 % powder
Acetyl coenzyme A sodium
salt 93% (HPLC), powder

Acetyl coenzyme A trilithium
salt ~95 %
Acetylcholine chloride 99%
(TLC)
Adenine hydrochloride
hydrate 99%
Adenosine 3',5'-cyclic
monophosphate sodium salt
monohydrate ~98 % (HPLC)
powder
Adenosine 3'-phosphate 5'-
phosphosulfate lithium salt
hydrate 60%

coenzyme A lithium salt 390 %

DL-Glyceraldehyde 90% (GC)

DL-Glyceraldehyde 3-
phosphate diethyl acetal
barium salt
DL-Homocysteine 95%
(titration)

DL-lsocitric acid trisodium salt
hydrate 93%
Ethanolamine 98%

Farnesyl pyrophosphate
ammonium salt
methanol:ammonia solution,

95% (TLC)
g-Aminobutyric acid 399 %

g-Linolenic acid 399 % liquid

Geranyl pyrophosphate
ammonium salt 1 mg/mL in
methanol (:aqueous 10 mM
NH40H (7:3)), 95% (TLC)
Glycerol ReagentPlus*,

99.0% (GC)
Glycine ReagentPlus*, 99%
(HPLC)
Glycocyamine

Glycolic acid
(titration)

BioXtra, 98.0%

Glyoxylic acid solution 50 %
(w/w) in water

N-Acetyl-D-mannosamine

N-Acetyineuraminic acid
from Escherichia coli Type
VI 398 %
n-Heptadecanoyl coenzyme A
lithium salt 90%

n-Propionyl coenzyme A
lithium salt 85%
N,N-Dimethylglycine 99%

Ne,NeNe-Trimethyllysine 397
% (TLC)

O-Acetyl-L-carnitine
hydrochloride 99%
(titration), powder
O-Acetyl-L-serine
hydrochloride
O-Phospho-L-serine

0-Phosphorylethanolamine

Octanoyl coenzyme A lithium
salt monohydrate 90-95 %
Oleoyl coenzyme A lithium
salt 90% (HPLC)
Orotic acid 98% (titration),
anhydrous

Orotidine 5'-monophosphate
trisodium salt 99% (HPLC),
powder

90



Adenosine 5'-diphosphate
sodium salt bacterial 95-99

Adenosine 5'-triphosphate
disodium salt Grade 1 399 %

Adenosine 5'-diphosphate
sodium salt bacterial, 95%
(HPLC)
Adenosine 5'-
monophosphate sodium salt
from yeast, 99%
Adenosine 5'-phosphosulfate
sodium salt 85%

Adenosine 5'-triphosphate
disodium salt hydrate Grade
1, 299%, from microbial _

Adenosine-5'-
diphosphoglucose disodium
salt 293%
Adonitol 299%

Allantoin

Anthranilic acid reagent
grade 398 %
Arachidonic acid from
porcine liver -99 % (capillary
GC) oil
Arachidonoyl coenzyme A
lithium salt 185 %

Argininosuccinic acid
disodium salt hydrate "80%
b-Alanine cell culture tested
insect cell culture tested
b-Methylcrotonyl
coenzyme A lithium salt 390

b-Nicotinamide adenine

Guanine Sigma Grade
crystalline 399 % as
anhydrous (HPLC)
Guanosine 5'-diphosphate
sodium salt Type I, 96%
(HPLC)
Guanosine 5'-diphospho-3-L-
fucose sodium salt 85%

Guanosine 5'-
diphosphoglucose sodium
salt
Guanosine 5'-
monophosphate disodium
salt hydrate from yeast,_ 99%
Guanosine 5'-triphosphate
sodium salt hydrate 295%
(HPLC), powder
Hemin BioXtra, from Porcine,

97.0% (HPLC)

Hexanoyl coenzyme A
trilithium salt trihydrate '85

Histamine dihydrochloride
99% (TLC), powder

Homogentisic acid crystalline

Hypotaurine 98% (TLC)

Indole-3-acetic acid sodium
salt BioReagent, plant cell
culture tested, 98%
Indole-3-pyruvic acid

Inosine 99% (HPLC)

Inosine 5'-monophosphate
disodium salt hydrate from
muscle, Sigma Grade, 99-
100%
Inulin from chicory

Oxalic acid dihydrate
ReagentPlus*, 99.0% (GC)

Oxaloacetic acid ~98 %

p-Coumaric acid

Palmitoleoyl coenzyme A
lithium salt "90%

Palmitoyl coenzyme A lithium
salt 390 %

Phospho(enol)pyruvic acid
trisodium salt hydrate 297%
(enzymatic)
Phosphocholine chloride
calcium salt tetrahydrate
Sigma Grade
Phosphocreatine disodium
salt hydrate 297%

Porphobilinogen powder

Progesterone 99%

Prostaglandin E2 293%
(HPLC), synthetic

Psychosine from bovine brain
lyophilized powder

Putrescine dihydrochloride
98% (TIC)

Pyrocatechol 99%

S-(5'-Adenosyl)-L-
homocysteine crystalline

S-(5'-Adenosyl)-L-methionine
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dinucleotide 2'-phosphate
reduced tetrasodium salt 398

b-Nicotinamide adenine
dinucleotide hydrate 399 %
b-Nicotinamide adenine
dinucleotide phosphate
sodium salt 398 %
b-Nicotinamide adenine
dinucleotide, reduced
disodium salt hydrate 398%

Benzoyl coenzyme A lithium
salt 90%

Betaine

Betaine aldehyde chloride

Butyryl coenzyme A dilithium
salt hydrate 90-95 %

Cardiolipin solution bovine
heart "98 % (TLC) solution
Chitin crab shells practical
grade coarse flakes
Cholesterol Sigma
Grade 399%

Choline chloride 98%

Choline chloride 99%

Chondroitin sulfate sodium
salt bovine cartilage
standard (for CPC
(cetylpyridinium chloride)
titration)
Citric acid monohydrate
reagent grade 398 %
(GC/titration)
Coenzyme A hydrate 85%

sobutyryl coenzyme A
lithium salt 85%
Isopentenyl pyrophosphate
ammonium salt solution
1 mg/mL 395 % (TLC)
isovaleryl coenzyme A lithium
salt hydrate 90%

L-(-)-Malic acid 95-100 %
(enzymatic)

L-(+)-Arabinose 99%

L-(-)-Arabitol 98%

L-a-Lysophosphatidylcholine
from bovine brain "99 % Type

L-Alanine 98% (TLC)

L-Arginine reagent grade 398

% (TLC) powder
L-Asparagine 298% (HPLC)

L-Aspartic acid reagent
grade 398 % (TLC)
L-Carnitine hydrochloride
from synthetic "98 %
L-Carnosine ~99 % crystalline

L-Citrulline 298% (TLC)

L-Cystathionine 298% (TLC)

p-toluenesulfonate salt from
yeast (L-methionine
enriched), 80% (HPLC),

80% (spectrophotometric
assay)
Shikimic acid 99%

sn-Glycero-3-phosphocholine
inner salt from egg yolk
5 mg/mL in methanol '98 %
Sodium phenylpyruvate
powder

Sodium pyruvate anhydrous,
free-flowing, Redi-DriT ,

I ReagentPlus*, 99%
Sodium pyruvate

ReagentPlus*, 99%
Sodium succinate dibasic
hexahydrate ReagentPlus*,
:99%

Spermidine trihydrochloride
98% (TLC)

Spermine tetrahydrochloride

Sphingomyelin from bovine
brain 398 % powder
Squalene 98%, liquid

Starch from wheat
Unmodified
Succinyl coenzyme A sodium
salt 85%
Sucrose 99.5%

Taurine 99%

Thymidine 5'-
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(UV, HPLC)

Coenzyme A sodium salt
hydrate cofactor for acyl
transfer
Coenzyme A trilithium salt

93%
Creatine anhydrous

Cytidine 5'-diphosphate
sodium salt hydrate from
yeast, 95%
Cytidine 5'-diphosphocholine
sodium salt dihydrate ~98%,
from yeast, solid
Cytidine 5'-triphosphate
disodium salt 95%
Cytidine-5'-monophospho-N-
acetyineuraminic acid
sodium salt 85% (HPLC)
D-(-)-3-Phosphoglyceric acid
disodium salt -95 % powder
D-(+)-Cellobiose

D-(+)-Galactose 99%

D-(+)-Glucose 99.5% (GC)

D-(+)-Mannose

D-(+)-Xylose 99%

D-(-)-Arabinose 98%

D-(-)-Fructose 99%

L-Cysteine from non-animal
source, BioReagent, suitable
for cell culture, 98%
L-Cysteinesulfinic acid
monohydrate
L-Cystine 98% (TLC),
crystalline

L-Dihydroorotic acid 99%

L-Glutamic acid monosodium
salt hydrate 99% (HPLC),
powder
L-Glutamine ReagentPlus*,
99% (HPLC)

L-Glutathione reduced
98.0%

L-Histidine ReagentPlus*,
299% (TLC)
L-Histidinol dihydrochloride
298 (TLC)
L-Homoserine

L-Isoleucine reagent
grade 398 % (TLC)

L-Kynurenine 298% (HPLC)

L-Leucine reagent grade 398
% (TLC)

L-Lysine 298% (TLC)

L-Methionine reagent

monophosphate disodium
salt hydrate 99%
Thymidine 5'-triphosphate
sodium salt 96%

Thymine 99%

trans-4-Hydroxy-L-proline
BioReagent, suitable for cell
culture, 98.5%
trans-Cinnamic acid 399 %

Tryptamine 399 % crystalline

Tyramine hydrochloride
98%

Uracil 299.0%

Urea ReagentPlus*, 299.5%,
pellets
Uric acid 299%, crystalline

Uridine 5'-(trihydrogen
diphosphate) sodium salt
from Saccharomyces
cerevisiae 95-100%
Uridine 5'-diphospho-N-
acetylgalactosamine
disodium salt 298%
Uridine 5'-diphospho-N-
acetylglucosamine sodium
salt 298%
Uridine 5'-
diphosphogalactose
disodium salt 297.0%
Uridine 5'-diphosphoglucose
disodium salt hydrate from
Saccharomyces cerevisiae

98%
Uridine 5'-
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D-(-)-Ribose 99%

D-Fructose 1,6-bisphosphate
sodium salt hydrate 3 70 %

D-Fructose 6-phosphate
disodium salt dihydrate -98
% (enzymatic) amorphous
powder
D-Glucosamine 6-phosphate
sodium salt -98 %
D-Glucose 6-phosphate
sodium salt Sigma Grade
crystalline
D-Glucuronic acid sodium
salt monohydrate 97.5-
102.5% (non-aqueous
titration)
D-Gulonic acid g-lactone 99

grade 198 % (TLC)

L-Ornithine
monohydrochloride -99 %
L-Phenylalanine reagent
grade 398 %

L-Proline ReagentPlus*, >99%
(HPLC)

L-Serine ReagentPlus*, >99%

(H PLC)
L-Threonine reagent
grade 198 % (TLC)

L-Tryptophan reagent
grade 198 % (TLC)

diphosphoglucuronic acid
trisodium salt 98-100%
Uridine 5'-monophosphate
disodium salt 99%
Uridine 5'-triphosphate
trisodium salt hydrate from
yeast, Type III, 96%
Xanthine 99.5% (HPLC),
purified by recrystallization

Xylitol 99%

a-D-Glucose 1-phosphate
disodium salt hydrate 97%

a-Ketoglutaric acid disodium
salt hydrate analytical
standard, 95%

a-Lactose monohydrate
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Exhibit B: Hydrochloric Acid (HCI) - ASA2 Test

Methods:
e Aliquot Iml of buffer to four different Eppendorf tubes for each pH (10mM Glutamic

Acid,IOmM Sodium Phosphate buffer, pH 3.5, pH 5.2, and pH 7.5)
- For each pH buffer, add either Opl, 1 0ptl, 50pl, or 1 OOpl of 5N HCl to result in the

experimental set up shown below:
OPIl 5N HCI
(Control)

pH 3.5

pH 5.2

pH 7.5

10pl 5N HCI 50pl 5N HCI 1I00pl 5N HCI

U

- Titrate the samples with HCl (with 5N HCl, IN HCl, 1ON NaOH, IN NaOH, as needed) so
that they are back to their target pH of 3.5, 5.2, or 7.5

e Populate a 96-well plate with 125pl of ASA2 at the respective pH and 125pl of each of the
samples shown above

e Final plate design*:

L pH33-Control pH3.5-19WHm pH35-62SpdV pH3.14iHO tpHS2-Control pHS2-12pHaO pH52-6.0Wji pHO 2- 12.s pH7.S-Qnr lpH7.S-L25d pH7.S-6 I. -13.750

0 - - 1 I aplS37-

*The volume of Ha shown in the plate for each sample accounts for any additional 5N HCI added during titration and dilution from ASA2

* Perform DSF, DLS, and SEC on samples at TO and at week 1, after one week of incubation
in 40C

Results:
Overview

DILS DSF I SEC

Radius (nm) Melting Temperature (*C) I % of Agregates
1wk1wkTO I wk

pH 3.5 - Control (Opl HCI) 4.4 4.5 45.0 47.0 2.2 17.8

pH 3.5 - 1.69lI HCI 5.0 1.7 39.8 None 2.9 93.9

pH 3.5 - 6.25p HCI 5.6 1.3 36.2 None 11.3 88.8**

pH 3.5 - 14jl HCI 6.5 179.4 35.8 None 20.9 79.1**

pH 5.2 - Control (OlI HCI) 5.1 4.9 62.8 62.0 1.9 2.3

pH 5.2 - 1.25pW HCI 5.2 5.2 62.8 62.2 2.0 2.3

pH 5.2 - 6.88p. HCI 5.1 5.3 60.2 60.6 2.0 2.3

pH 5.2 - 12.50 pHCI 5.1 4.9 59.8 60.0 2.0 2.3

pH 7.5 - Control (Old HCI) 5.3 5.3 66.4 66.8 2.4 2.5

pH 7.5 - 1.25pi HCI 5.2 5.1 66.6 66.4 2.3 2.5

pH 7.5 - 6.88W HCI 5.3 5.2 65.6 65.6 2.3 2.5

pH 7.5 - 13.75p HCI 5.4 5.5 64.6 65.0 2.2 2.5

*TO for SEC was actually measure on day 4; Initial TO run was on a bad column so sample was refrigerated for 3 days until a new column arrived and was

measured on day 4 on the new column
**ASA2 was completed destroyed in these samples; % shown is indicative of the high level of degradation and not exact for aggregation
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Control

1.69pi 5N HC

n 6.25pAand 14pl 5N HC
(flat lines)

to

-4 31-4313 4s Big $is A %A to 1 i 4A 4i4 4k is $2 $A A is

to 11111 3I111343333*114 3t**amsmi mja

43 an cis n. asmt I& aim I. am am Ni Ib as3 AS1 Ni 711 .4k as Ni G3 Nm Xmai

DistrIlbutton of ASA2's Hydrodynamic Radius atTO Distribution of ASA2's Hydrodynamic Radius at Week I

- ASA2 - pH 3.5 - 1.69piof 5N HCI

ASA2 pH3. - 14ptof5NHCI

ASA2 - H 3.5 - 14plof 5N HCI

Radius (nm) RadIus (nm)

Plals Design

H33 H35 H35 H3 S H S2 52 2 H2 73 5H72 .H7.5 75
Control) .69i SN MCI .2Spl SN MCI 4pl SN MCI Control) .25pgaN MCI . MtNCI S2.50a SN HCntro) .2SpISNHCI .8pl 5N MCI 3.75pI SN H
IMNC Ie C~lNMd atN~

96

SEC Results

% Aggregates
pH 3.5- Control (Old HCI) 17.8
pH 3.5- 1.69pl HCI 93.9
pH 3.5 - 6.25pl HCl -
pH 3.5 -14 AHCI --
pH 5.2- Control (Ol HCI) 2.3
pH 5.2- 1.251p HCI 2.3
pH 5.2- 6.88l HCI 2.3
pH 5.2- 12.50id HC 2.3
pH 7.5- Control (Opl HCI) 2.5
pH 7.5-1.25pd HC 2.5
pH 7.5- 6.88l HCI 2.5
pH 7.5- 13.75p HCI 2.5

DLS Results

0)

0

C
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a

a

wNft
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DSF Results
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so so so so

P*86
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.... .... .......... ............
20 4:0 so so 70 so so

ft"M

-0
... .......

:000

0 ..... ..

-600

-low

.low

30 40 so r 0 00 SO

Melting

Temperature
(*C) - Week 1

pH 3.5- Control (0p HCI) 47.0
pH 3.5- 1.69il HCI None
pH 3.5- 6.25p0 HCI None
pH 3.5-14pl HCI None
pH 5.2- Control (0il HCI) 62.0
pH 5.2- 1.25pil HCI 62.2
pH 5.2- 6.88p HCI 60.6
pH 5.2- 12.5 HCI 60.0
pH 7.5- Control (Opl HCI) 66.8
pH 7.5 - 1.25p] HCI 66.4
pH 7.5 -6.88pl HCI 65.6

pH 7.5 - 13.75pl HCI 65.0

m Tor ASA2 pri 5.2 control is 62 C
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