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Graphical Abstract 

The prediction model of oral disintegrating tablets formulations with direct compression process 

by Artificial Neural Network (ANN) and Deep Neural Network (DNN) techniques were 

established. 145 formulation data were extracted from Web of Science. All data sets were 

divided into three parts: training set (105 data), validation set (20) and testing set (20) to build 

prediction model. 

 
 

Abstract 

 

Oral Disintegrating Tablets (ODTs) is a novel dosage form that can be dissolved on the 

tongue within 3min or less especially for geriatric and pediatric patients. Current ODT 

formulation studies usually rely on the personal experience of pharmaceutical experts and trial-

and-error in the laboratory, which is inefficient and time-consuming.  The aim of current 

research was to establish the prediction model of ODT formulations with direct compression 

process by Artificial Neural Network (ANN) and Deep Neural Network (DNN) techniques. 145 

formulation data were extracted from Web of Science. All data sets were divided into three parts: 

training set (105 data), validation set (20) and testing set (20). ANN and DNN were compared 

for the prediction of the disintegrating time. The accuracy of the ANN model has reached 

85.60%, 80.00% and 75.00% on the training set, validation set and testing set respectively, 

whereas that of the DNN model was 85.60%, 85.00% and 80.00%, respectively. Compared with 

the ANN, DNN showed the better prediction for ODT formulations. It is the first time that deep 

neural network with the improved dataset selection algorithm is applied to formulation prediction 

on small data. The proposed predictive approach could evaluate the critical parameters about 

quality control of formulation, and guide research and process development. The implementation 
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of this prediction model could effectively reduce drug product development timeline and 

material usage, and proactively facilitate the development of a robust drug product. 

 

Keywords: oral disintegrating tablets; formulation prediction; artificial neural network; deep 

neural network; deep learning 

 

 

 

 

 

 

 

 

 

1. Introduction 
 

Oral dosage forms are always the most widely used dosage form because of their 

convenience of self-administration, good stability, accurate dosing and easy manufacturing[1]. 

However, swallowing difficulty of the pediatric or geriatric patient is a big concern for 

conventional tablets. Dysphagia is observed in about 35% of the general population among all 

age groups, as well as in up to 40% of the elder population and 18-22% of all patients in long-

term care facilities[2]. To overcome the difficulty in swallowing, oral disintegrating tablets 

(ODTs) have been developed since the 1990s[3, 4]. ODTs are designed to be dissolved on the 

tongue rather than swallowed whole as conventional tablets [5, 6]. The disintegrating time of 

ODTs is within 3 min or less in the saliva without the intake of water [7, 8]. In recent years, there 

is the growing demand about good ODT formulations with new disintegrants and convenient 

preparation methods. There are three major techniques which are widely used for ODT 

manufacture: freeze drying, tablet molding, tablet compression [9, 10]. Comparing with many 

other preparation methods, direct compression is most widely used because of its most effective 

and simplest process[11]. The formulations of ODTs with direct compression method usually 
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contain the filler, binder, disintegrant, lubricant and solubilizer[12]. Therefore, formulation 

design of ODTs is critical to minimize the disintegrating time with good tablet quality. 

Current pharmaceutical formulation development usually depends on experimental trial-

and-error by personal experiences of formulation scientists, which is inefficient and time-

consuming. To improve the efficiency of formulation screening, the SeDeM diagram expert 

system was developed to optimize formulations[13]. SeDeM diagram expert system was able to 

evaluate the influence of every excipient on the final formulation for direct compression based 

on the experimental study and quantitative characterization parameters[14]. Then this expert 

system considered the type of excipients and physicochemical properties to output a 

recommended formulation. Moreover, the mathematical analysis of SeDeM was able to 

recommend not only formulation components but also the optimal ratios of excipients [14, 15]. 

Firstly, 43 excipients were investigated the suitability for direct compression, especially the 

compressibility of disintegrants. According to the ICHQ8, the suitability was described as these 

parameters: bulk density, tapped density, inter-particle porosity, Carr index, cohesion index, 

Hausner ratio, angle of repose, powder flow, loss on drying, hygroscopicity, particle size and 

homogeneity index. The SeDeM system could show the profile of every excipient and evaluate 

how suitable it can be used for direction compression[12]. According to the predicted result and 

combining with the experimental study, 8 excipients with the better properties were chosen to 

make a comparison using the new expert system. Compared with the old system, the new system 

could quantify the compressibility index of every excipient with the higher precision[16]. For 

example, ibuprofen ODT formulations were investigated with the suitability of 21 excipients and 

obtained the final SeDeM diagram with 12 parameters[17]. Current SeDeM method just focused 

on the recommended formulation, but it cannot quantitatively predict the disintegrating time of 

ODT formulations. With the challenge of pharmaceutical research, we need to establish a 

prediction method to assist experts evaluate the performance of ODT formulations. 

The neural network is a wonderful biologically-inspired model that learn from observational 

data. That is an artificial network with seriously connected units by simulating the neural 

structure of the brain[18]. Neural network has been applied to solve problems in many fields, 

such as voice recognition and computer vision. Artificial neural network and deep neural 

network are two widely used neural networks, as shown in Fig. 1&2 [19]. ANN is a simple 

neuron network with only one hidden layer, while DNN is a more powerful technique with many 
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complex layers to reach the high-level data representation. In pharmacology and bioinformatics 

research, ANN also has been used over two decades, included prediction of protein secondary 

structure and quantitative structure-activity relationship[20]. As the pharmaceutical research, the 

prediction models were developed for break force and disintegration of tablet formulation by 

ANN, genetic algorithm, support vector machine and random forest approaches [21]. Another 

ANN example was quantitative structure activity relationships (QSAR) of antibacterial activity 

study[22, 23]. DNN is a type of representation learning with multiple levels of neural networks. 

Unlike the traditional ANN with manual feature extraction, deep-learning can automatically 

extract feature even transform low-level representation to more abstract level without any feature 

extractor [24]. Moreover, deep-learning is more sensitive to irrelevant and particular minute 

variations with complicated parameters of the network, which could reach higher accuracy rather 

than the conventional machine learning algorithms [19]. In recent years, DNN has been applied 

in pharmacy research, such as drug design, drug-induced liver injury and virtual screening[25]. 

In most cases, deep-learning could generate a novel and complex system to represent various 

objects through molecular descriptor so that it would be very helpful for drug discovery and 

prediction[26]. Junshui Ma et al. extracted data from internal Merck data and included on-target 

and absorption, distribution, metabolism, excretion (ADME), each molecular was described as 

serious features. Finally, they use deep neural nets to evaluate QSAR and the result was better 

than random forest commonly used[27].   

The aim of current research was to establish the quantitative prediction model of the 

disintegrating time of ODT formulations with direct compression process by ANN or DNN.  

 

2. Methodology 

 

2.1. Data Extraction 

  

Formulation data collection was the foundation of building the prediction model. To ensure 

the data reliability, the keyword search strategy was used in Web of Science database. The 

synonym strings of keywords were used, such as “oral” + “disintegrating” + “tablets” with 461 

results, “fast” + “disintegrating” + “tablets” with 407 results, “rapidly” + “disintegrating” + 

“tablets” with 266 results, and “oral” + “dispersible” + “tablets” with 84, respectively. Among 

these results, only research articles were selected for further data extraction. After the manual 
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screening, 145 direct compressed ODT formulations with the disintegrating time were extracted 

including 23 active pharmacological ingredients (API) groups for our model, as shown in Table 

1. All APIs were described as ten molecular parameters, including molecular weight, XLogP3, 

hydrogen bond donor count, hydrogen bond acceptor count, rotatable bond count, topological 

polar surface area, heavy atom count, complexity and logS. According to the function of 

excipients, all excipients were divided into five categories: filler, binder, disintegrant, lubricant, 

and solubilizer. Each type of excipients was individually coded for further training. The 

formulation data included API molecular descriptors and its amount, the type of encoded 

excipients and its amount, manufacture parameters (e.g. the hardness, friability, thickness and 

tablet diameter) and the disintegrating time of each formulation.  

 

2.2.Dataset Classification: Training set, Validation set and Testing set 

  

To ensure good prediction ability of computational model, especially in the small amount of 

pharmaceutical data, the dataset should be carefully divided into three parts, including training 

set, validation set and testing set. The three datasets strategy is an effective way to test the 

accuracy on new data out of our datasets. In details, the training set is for training model and the 

validation set is used for adjusting the parameters and finding the best model, while testing set 

shows the prediction accuracy on real unknown data from the datasets, as shown in Fig. 3. 

Therefore, how to select data for three datasets appropriately is the key step. Compared with 

random selection, manual selection and maximum dissimilarity algorithm selection, the 

improved maximum dissimilarity algorithm (MD-FIS) is the best choice. MD-FIS is based on the 

maximum dissimilarity algorithm considering with small group data in the whole dataset, it will 

avoid selecting data mostly from small group and ensure the representation of validation and test 

set. 

 

2.3. Hyperparameters of Artificial Neutral Network and Deep Neural Network 

   

The prediction model for ODTs was trained by ANN and DNN, respectively. In the training 

process, all data are normalized and then divided into three sets with our previous proposed MD-

FIS selection algorithm in R language. For ANN and DNN network, Deeplearning4j machine 

learning framework (https://deeplearning4j.org/) was used to train prediction models. All the 
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source code can be found on the website (http://ml.mydreamy.net/pharmaceutics/ODT.html). The 

ANN model in Figure. 1. with termination condition at 15000 epochs and hidden nodes is 200. 

The deep-learning process in Figure. 2. use full-connected deep feedforward networks including 

ten layers with 2000 epochs. This neural network contains 50 hidden nodes on each layer. All 

networks choose tanh as the activation function except the last layer with sigmoid activation 

function. Learning rate is set to 0.01. Batch gradient descent with the 0.8 momentum is used for 

training the networks.  

Note that epoch indicates how many times the dataset is used for training. Feed-forward 

network means that the output of the network is computed layer-by-layer from one-direction 

without any inside loop. Learning rate impacts how fast the network will be convergent. Batch 

gradient descent is a training strategy to use all dataset to train the model at each time. 

Momentum indicates how much the speed will be kept in each training step. 

  

2.4. Pharmaceutical Evaluation Criterion 

 

European Pharmacopeia defined that ODT could disintegrate within 3 min in the mouth 

before being swallowed. In all our formulation data, the disintegrating time ranges from 0 sec to 

100 sec. Usually, the successful prediction in pharmaceutics is that absolute error is less than 

10%. Thus, a good model is that the prediction deviation of the disintegrating time is not more 

than 10sec. The accuracy of prediction disintegrating time is the percentage of successful 

prediction to total predictions:  

            
                 

              
 

Where,    is the prediction value,   is the label (real) value. All predictions are the number 

of predicted data. 

 

3. Results and discussion 

 

Fig. 4 showed the label (true) value and predictive value of disintegrating time on ANN 

model (A. training set; B. validation set; C. testing set), while indicated the true value and 

predictive value of disintegrating time on DNN model (D. training set; E. validation set; F. 
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testing set). As shown in Figure. 4, the training set and validation set of both ANN and DNN 

showed good results. As Table 2 shows, the predictive accuracy of ANN model is 85.60% on 

training set and 80.00% on validation set, while the DNN model is 85.60% and 85.00%, 

respectively. However, the testing set of ANN with only 75.00% accuracy is lower than that of 

DDN (80.00%), which indicated that DNN is able to significantly better predict real unknown 

data than ANN.   

As the result shows, ANN is an efficient network for training prediction model within the 

adjustment of validation set, reaching a high accuracy on training set and validation set. However, 

when predicting real unknown data, the accuracy of testing set dropped significantly, which is 

called overfitting in machine learning. DNN performs well in all three data sets with over 80% 

accuracy and predicted stably with average value, which is more capable of establishing a better 

prediction model for ODT than ANN.  

When analyzing the different network structure between ANN and DNN, ANN just 

includes one hidden layer, while DNN includes ten layers with 2000 epochs and each layer 

contains 50 hidden nodes. Thus, DNN could extract the feature of data with higher level and give 

a more accurate predictive result. It is unsurprised that DNN, as an innovative and effective 

technique for pharmaceutical research, can provide a higher accuracy prediction about 

disintegrating time than ANN. Thus, the desired DNN with the proposed MD-FIS selection 

algorithm can be used to achieve good predictive results on pharmaceutical formulations with 

small data.  

In order to ensure a satisfied prediction accuracy, two key factors are to be considered: data 

and algorithm. The first issue is the reliable data in pharmaceutical research. Deep-learning 

attempts to learn these characteristics to make better representations and create models from 

reliable data. Thus, data extraction is a critical step. In current research, reliable formulation data 

set were manually extracted and labeled from the research articles of Web of Science by 

experienced pharmaceutical scientists.  

On the other hand, small data in pharmaceutical research is the key issue to be solved. 

Although there are many DNN examples about imaging recognition, natural language processing 

and auto-mobile car, it is still very few pharmaceutical researches about deep-learning. Usually 

speaking, deep learning methods require a large amount of data for training. This is not a 

problem in other fields which have the big data source. However, this is a big challenge for the 
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pharmaceutical researches due to the experimental limitation. Thus, the most important problem 

is: how to train a good prediction model on small data with high-dimensions input space? For 

example, the formulation data of ODTs includes the chemical and physical properties of APIs, 

multiple excipients with various ratios and four tablets characteristic parameters. In our 145-

formulation data, it was found that near half of APIs groups' size is less than 3 (small API group). 

Therefore, the splitting strategy of data set is critical for model establish.  Firstly, 20 

representative testing set were picked up from the whole dataset by pharmaceutical scientists. As 

for training set and validation set selection, before using automatic selection algorithm, manual 

selection approach was adopted to ensure the appropriate selection of these two data sets. 

However, the manual selection needs experts with strong background knowledge, which is time-

consuming and non-standardized. When trying the random selection method, the data from small 

API groups with no representation was easily selected.  Thus, the improved maximum 

dissimilarity algorithm (MD-FIS) is developed to select training set and validation set. MD-FIS 

is based on the maximum dissimilarity algorithm with the small group filter, representative initial 

set selection algorithm and new selection cost function. In the MD-FIS process, the data go 

through a filter to get rid of the data from the small API groups, then the MD-FIS randomly get 

the initial data sets, compute each distance from the initial data set to the corresponding 

remaining data, the minimum distance data are chosen as the final initial set. The final initial set 

and remaining data are the input to the dissimilarity algorithm with new selection cost function. 

The selected data is the validation set, while the remaining data is used as the training set. 

Because of the small group filter, the validation set from the general groups could represent the 

feature of whole data set.   

The second important issue is the selection of network algorithm. As deep convolutional 

networks inspired from visual neuroscience usually achieve a good result for processing images, 

video, speech and audio[28]. Recurrent neural networks contained history information of the 

sequence have brought the breakthrough in sequential data such as text and speech[29]. Our 

pharmaceutics data only includes properties of API, excipients with its amount and tablet 

parameters. There is no chronic relationship between each data. Our target is to predict the 

disintegrating time. Hence, compared with the deep convolutional networks and recurrent neural 

networks, the full-connected deep feedforward networks should be the best choice for the 

proposed problem. The challenge about deep feedforward network is computing too many 
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parameters and vanishing the gradient. The results show that the satisfied accuracy could be 

reached by DNN. The deep learning method with the proposed data selection algorithms and 

pharmaceutics evaluation criterion can reach the desired models, which satisfy the accuracy 

requirements in the pharmaceutics. This deep-learning approach could save a lot of time, 

manpower and material resource for formulation development of ODTs. This will greatly benefit 

the formulation design in pharmaceutical research. 

Although DNN has reached the expected prediction accuracy on small pharmaceutical data 

sets, the mechanism of DNN is still a black box, and it is difficult to explain the mapping 

procedure from the input layer to the output layer. For example, it is unclear how each 

formulation component contributes to the disintegrating time. Moreover, current model cannot 

be directly applied to another evaluation parameters of formulations. Current prediction model 

for ODTs is just the first step in intelligent research for formulation development. Further 

research in intelligent formulation systems is underway in our laboratory.  

 

4. Conclusions 

 

The traditional “trial-and-error” method for formulation development has existed hundreds 

of years, which always cost a large amount of time, financial and human resources. Oral 

disintegrating tablets is a novel and important formulation form in recent years because of its 

convenience and good disintegration ability. Current research developed the DNN with MD-FIS 

select algorithm to establish a good prediction model for the disintegrating time of ODT 

formulations. On the other hand, this research is also a good example for deep-learning on small 

data. The proposed predictive approach not only contains formulation information of ODTs, but 

consider with the influence of tablet characteristic parameters, it could evaluate the critical 

parameters about quality control of formulation, and guide formulation research and process 

development. This deep-learning model could also be applied to other dosage forms and more 

fields in pharmaceutical research. The implementation of this prediction model could effectively 

reduce drug product development timeline and material usage, and proactively facilitate the 

development of a robust drug product.  

 

Page 10 of 27



Acknowledgments 

 

Current research is financially supported by the University of Macau Research Grant 

(MYRG2016-00038-ICMS-QRCM & MYRG2016-00040-ICMS-QRCM), Macau Science and 

Technology Development Fund (FDCT) (Grant No. 103/2015/A3) and the National Natural 

Science Foundation of China (Grant No. 61562011). 

Declaration of interest 

 

The authors report no conflicts of interest. The authors alone are responsible for the content 

and writing of this article. 

 

References 

 

[1]. Bhowmik D, Chiranjib B, Krishnakanth P, and Chandira R M, Fast dissolving tablet: an 

overview. J Chem Pharm Res, 2009. 1(1):  163-77. 

[2]. Bandari S, Mittapalli R K, and Gannu R, Orodispersible tablets: An overview. Asian J 

Pharm, 2014. 2(1). 

[3]. Lindgren S and Janzon L, Dysphagia: Prevalence of swallowing complaints and clinical 

finding. Med Clin North Am, 1993. 77:  3-5. 

[4]. Dutta S and De P K, Formulation of fast disintegrating tablets. Int J Drug Formulation & 

Research, 2011. 201(2):  1. 

[5]. Fu Y, Yang S, Jeong S H, Kimura S, and Park K, Orally fast disintegrating tablets: 

developments, technologies, taste-masking and clinical studies. Crit Rev ™ Ther Drug, 

2004. 21(6). 

[6]. Prateek S, Ramdayal G, Kumar S U, Ashwani C, Ashwini G, and Mansi S, Fast 

dissolving tablets: a new venture in drug delivery. Am J pharmTech Res, 2012. 2(4):  

252-79. 

[7]. Kaur T, Gill B, Kumar S, and Gupta G, Mouth dissolving tablets: a novel approach to 

drug delivery. Int J Curr Pharm Res, 2011. 3(1):  1-7. 

[8]. Douroumis D, Orally disintegrating dosage forms and taste-masking technologies; 2010. 

Expert Opin Drug Del, 2011. 8(5):  665-75. 

[9]. Shukla D, Chakraborty S, Singh S, and Mishra B, Mouth dissolving tablets I: An 

overview of formulation technology. Sci Pharm, 2009. 77(2):  309-26. 

Page 11 of 27



[10]. Siddiqui M N, Garg G, and Sharma P K, Fast dissolving tablets: preparation, 

characterization and evaluation: an overview. Int J Pharm Rev Res, 2010. 4(2):  87-96. 

[11]. Al-Khattawi A and Mohammed A R, Compressed orally disintegrating tablets: excipients 

evolution and formulation strategies. Expert Opin Drug Del, 2013. 10(5):  651-63. 

[12]. Aguilar-Díaz J E, García-Montoya E, Pérez-Lozano P, Suñe-Negre J M, Miñarro M, and 

Ticó J R, The use of the SeDeM Diagram expert system to determine the suitability of 

diluents–disintegrants for direct compression and their use in formulation of ODT. Eur J 

Pharm Biopharm, 2009. 73(3):  414-23. 

[13]. Pérez P, Suñé-Negre J M, Miñarro M, Roig M, Fuster R, García-Montoya E, et al., A 

new expert systems (SeDeM Diagram) for control batch powder formulation and 

preformulation drug products. Eur J Pharm Biopharm, 2006. 64(3):  351-9. 

[14]. Suñé Negre J, Roig Carreras M, Fuster García R, Hernández Pérez C, Ruhí Roura R, 

García Montoya E, et al., Nueva metodología de preformulaciÓn galénica para la 

caracterizaclÓn de sustancias en relaciÓn a su viabilidad oara la comoresiÓn: Diaqrama 

SeDeM. Ciencia y tecnología pharmacéutica, 2005. 15(3):  125-36. 

[15]. Suñé-Negre J M, Pérez-Lozano P, Miñarro M, Roig M, Fuster R, Hernández C, et al., 

Application of the SeDeM Diagram and a new mathematical equation in the design of 

direct compression tablet formulation. Eur J Pharm Biopharm, 2008. 69(3):  1029-39. 

[16]. Aguilar-Díaz J E, García-Montoya E, Suñe-Negre J M, Pérez-Lozano P, Miñarro M, and 

Ticó J R, Predicting orally disintegrating tablets formulations of ibuprophen tablets: an 

application of the new SeDeM-ODT expert system. Eur J Pharm Biopharm, 2012. 80(3):  

638-48. 

[17]. Aguilar-Díaz J E, García-Montoya E, Pérez-Lozano P, Suñé-Negre J M, Miñarro M, and 

Ticó J R, SeDeM expert system a new innovator tool to develop pharmaceutical forms. 

Drug Dev Ind Pharm, 2014. 40(2):  222-36. 

[18]. Hopfield J J, Neural networks and physical systems with emergent collective 

computational abilities, in Spin Glass Theory and Beyond: An Introduction to the Replica 

Method and Its Applications. 1987, World Scientific.  411-5. 

[19]. Schmidhuber J, Deep learning in neural networks: An overview. Neural networks, 2015. 

61:  85-117. 

[20]. Rost B and Sander C, Combining evolutionary information and neural networks to 

predict protein secondary structure. Proteins, 1994. 19(1):  55-72. 

[21]. Akseli I, Xie J, Schultz L, Ladyzhynsky N, Bramante T, He X, et al., A Practical 

Framework Toward Prediction of Breaking Force and Disintegration of Tablet 

Formulations Using Machine Learning Tools. J Pharm Sci, 2017. 

[22]. Dudek A Z, Arodz T, and Gálvez J, Computational methods in developing quantitative 

structure-activity relationships (QSAR): a review. Comb Chem High T Scr, 2006. 9(3):  

213-28. 

Page 12 of 27



[23]. Murcia-Soler M, Pérez-Giménez F, García-March F J, Salabert-Salvador M T, Díaz-

Villanueva W, Castro-Bleda M J, et al., Artificial neural networks and linear discriminant 

analysis: a valuable combination in the selection of new antibacterial compounds. J Chem 

Inf Comp Sci, 2004. 44(3):  1031-41. 

[24]. LeCun Y, Bengio Y, and Hinton G, Deep learning. Nature, 2015. 521(7553):  436-44. 

[25]. Xu Y, Dai Z, Chen F, Gao S, Pei J, and Lai L, Deep learning for drug-induced liver 

injury. J Chem Inf Model, 2015. 55(10):  2085-93. 

[26]. Baskin I I, Winkler D, and Tetko I V, A renaissance of neural networks in drug discovery. 

Expert Opin Drug Dis, 2016. 11(8):  785-95. 

[27]. Ma J, Sheridan R P, Liaw A, Dahl G E, and Svetnik V, Deep neural nets as a method for 

quantitative structure–activity relationships. J Chem Inf Model, 2015. 55(2):  263-74. 

[28]. Hinton G, Deng L, Yu D, Dahl G E, Mohamed A-r, Jaitly N, et al., Deep neural networks 

for acoustic modeling in speech recognition: The shared views of four research groups. 

IEEE Signal Proc Mag, 2012. 29(6):  82-97. 

[29]. Bengio Y, Simard P, and Frasconi P, Learning long-term dependencies with gradient 

descent is difficult. IEEE T Neural Networ, 1994. 5(2):  157-66. 

   

 

 

Page 13 of 27



 

  Fig. 1. The network structure of ANN  

 

 

  Fig. 2. The network structure of DNN  
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Fig. 3. The flowchart of establishing model   
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Fig. 4. The true value and predictive value on dataset: (A) the true value and predictive value of 

training set and (B) validation set and (C) testing set on ANN model. (D) the true value and 

predictive value of training set and (E) validation set and (F) testing set on DNN model. 
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Table 1 The formulation data of ODTs 

API Filler Binder Disintegrant Lubricant Solubilzer           

API 
Dose 

(mg) 
Filler 

Dose 

(mg) 

Fill

er 

Dose 

(mg) 

Bin

der 

Dose 

(mg) 

Disint

egrant 

Dose 

(mg) 

Disint

egrant 

Dose 

(mg) 

Lubric

ant 

Dose 

(mg) 

Lubric

ant 

Dose 

(mg) 
Solubilzer 

Dose 

(mg) 

Hardne

ss (N) 

Friabili

ty(%) 

Thicknes

s (mm) 

Punch 

(mm) 

Disintegration 

time (sec) 

Mirtazapin

e  
45 

Man

nitol 
285 

MC

C 
0 

PV

P 
195 CC-Na 25 

 
  

Aerosi

l  
0 

Mg 

stearat

e 

10     53 0.56 4.76 
 

30 

Mirtazapin

e  
45 

Man

nitol 
264 

MC

C 
0 

PV

P 
195 CC-Na 25 

 
  

Aerosi

l  
0 

Mg 

stearat

e 

10     50 0.52 4.75 
 

24 

Hydrochlor

othiazide 
50 

Sucr

alose 
133.6 

 
      CC-Na 8 PVPP 8 

Aerosi

l  
15 

Mg 

stearat

e 

4     45 
  

8 10 

Hydrochlor

othiazide 
50 

Sucr

alose 
0 

 
      CC-Na 8 PVPP 8 

Aerosi

l  
15 

Mg 

stearat

e 

4     45 
  

8 21 

Paracetamo

l 
224.4 

Man

nitol 
303.6 

 
      CC-Na 44.4 

 
  

Mg 

stearat

e 

3 
 

      28 2.06 

 

11 37 

Paracetamo

l 
224.4 

Man

nitol 
303.6 

 
      CC-Na 36.6 

 
  

Mg 

stearat

e 

3 
 

      41 0.88 

 

11 58 

Paracetamo

l 
224.4 

Man

nitol 
291.6 

 
      CC-Na 32.4 

 
  

Mg 

stearat

e 

3 
 

      48 0.56 

 

11 40 

Paracetamo

l 
224.4 

Man

nitol 
291.6 

 
      CC-Na 28.6 

 
  

Mg 

stearat

e 

3 
 

      50 0.65 

 

11 67 

Paracetamo

l 
325 MCC 113 

 
      CC-Na 0 

CMS-

Na 
40 

Mg 

stearat

e 

2 
 

      45 0.86 

 

11 37 

Paracetamo

l 
325 MCC 113 

 
      CC-Na 40 

CMS-

Na 
20 

Mg 

stearat

e 

2 
 

      45 0.69 

 

11 52.33 

Famotidine 20 
Man

nitol 
71.76 

Lact

ose 
0 

L-

HP

C 

0 CC-Na 2.34 
CMS-

Na 
0 

Mg 

stearat

e 

0.5 
 

      46 0.95 

 

7 22.91 

Famotidine 20 
Man

nitol 
0 

Lact

ose 
71.6 

L-

HP

C 

0 CC-Na 2.34 
CMS-

Na 
0 

Mg 

stearat

e 

0.5 
 

      65 0.96 

 

7 11.69 

Famotidine 20 
Man

nitol 
0 

Lact

ose 
0 

L-

HP

C 

0 CC-Na 2.34 
CMS-

Na 
0 

Mg 

stearat

e 

0.5 
 

      60 1.25 

 

7 14.63 
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Famotidine 20 
Man

nitol 
75.66 

Lact

ose 
0 

L-

HP

C 

0 CC-Na 0 
CMS-

Na 
6.24 

Mg 

stearat

e 

0.5 
 

      57 0.99 

 

7 17.19 

Famotidine 20 
Man

nitol 
0 

Lact

ose 
75.66 

L-

HP

C 

0 CC-Na 0 
CMS-

Na 
6.24 

Mg 

stearat

e 

0.5 
 

      92 1.02 

 

7 30.27 

Famotidine 20 
Man

nitol 
0 

Lact

ose 
0 

L-

HP

C 

0 CC-Na 0 
CMS-

Na 
6.24 

Mg 

stearat

e 

0.5 
 

      103 0.98 

 

7 12.48 

Famotidine 20 
Man

nitol 
66.3 

Lact

ose 
0 

L-

HP

C 

11.7 CC-Na 0 
CMS-

Na 
0 

Mg 

stearat

e 

0.5 
 

      55 0.97 

 

7 11.42 

Famotidine 20 
Man

nitol 
0 

Lact

ose 
66.3 

L-

HP

C 

11.7 CC-Na 0 
CMS-

Na 
0 

Mg 

stearat

e 

0.5 
 

      108 1.13 

 

7 47.25 

Famotidine 20 
Man

nitol 
0 

Lact

ose 
0 

L-

HP

C 

11.7 CC-Na 0 
CMS-

Na 
0 

Mg 

stearat

e 

0.5 
 

      121 0.92 
 

7 52.21 

Acetamino

phen 
325 MCC 133 

 
      CC-Na 20 

CMS-

Na 
0 

Mg 

stearat

e 

2 
 

      45 0.86 
 

11.1 33 

Acetamino

phen 
325 MCC 113 

 
      CC-Na 40 

CMS-

Na 
0 

Mg 

stearat

e 

2 
 

      46 0.43 
 

11.1 35 

Acetamino

phen 
325 MCC 113 

 
      CC-Na 20 

CMS-

Na 
0 

Mg 

stearat

e 

2 
 

      45 0.76 
 

11.1 24 

Acetamino

phen 
325 MCC 133 

 
      CC-Na 0 

CMS-

Na 
20 

Mg 

stearat

e 

2 
 

      47 0.92 
 

11.1 42.33 

Acetamino

phen 
325 MCC 113 

 
      CC-Na 0 

CMS-

Na 
20 

Mg 

stearat

e 

2 
 

      50 0.95 
 

11.1 29 

Acetamino

phen 
325 MCC 133 

 
      CC-Na 20 

CMS-

Na 
20 

Mg 

stearat

e 

2 
 

      52 0.78 
 

11.1 51 

Acetamino

phen 
325 MCC 113 

 
      CC-Na 20 

CMS-

Na 
20 

Mg 

stearat

e 

2 
 

      46 0.67 
 

11.1 53.33 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
61.45     CC-Na 14 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 36 0.78 3.13 8 27 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
59.7     CC-Na 15.75 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 35 0.82 3.18 8 25 
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Olanzapine 11.8 
Man

nitol 
41 

MC

C 
57.95     CC-Na 17.5 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 33 0.87 3.34 8 20 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
70.2     CC-Na 5.25 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 33 0.85 3.13 8 25 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
68.45     CC-Na 7 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 36 0.85 3.26 8 25 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
70.2     CC-Na 0 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 36 0.85 3.14 8 55 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
68.45     CC-Na 0 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 34 0.86 3.14 8 26 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
70.2     CC-Na 5.25 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 35 0.82 3.76 8 28 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
68.45     CC-Na 7 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 32 0.79 3.64 8 21 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
66.7     CC-Na 8.75 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 35 0.52 3.23 8 22 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
70.2     CC-Na 5.25 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 35 0.75 3.25 8 31 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
68.45     CC-Na 7 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 32 0.67 3.25 8 27 

Olanzapine 11.8 
Man

nitol 
41 

MC

C 
66.7     CC-Na 8.75 

 
  

Mg 

stearat

e 

0.875 
Aerosi

l  
0.875 

2-hydroxypropyl-

β-cyclodextrin 
43 38 0.65 3.21 8 68 

Eslicarbaze

pine 
800 

Man

nitol 
150 

MC

C 
70.08     CC-Na 0 PVPP 40 

Mg 

stearat

e 

4 
 

  β-cyclodextrin 109.9 38 0.85 6.5 16 45.33 

Eslicarbaze

pine 
800 

Man

nitol 
150 

MC

C 
50.08     CC-Na 0 PVPP 60 

Mg 

stearat

e 

4 
 

  β-cyclodextrin 109.9 37 0.75 6.5 16 24.66 

Eslicarbaze

pine 
800 

Man

nitol 
150 

MC

C 
70.08     CC-Na 0 PVPP 0 

Mg 

stearat

e 

4 
 

  β-cyclodextrin 109.9 38 0.81 6.5 16 49.33 

Eslicarbaze

pine 
800 

Man

nitol 
150 

MC

C 
50.08     CC-Na 0 PVPP 0 

Mg 

stearat

e 

4 
 

  β-cyclodextrin 109.9 38 0.87 6.5 16 55.66 
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Eslicarbaze

pine 
800 

Man

nitol 
150 

MC

C 
70.08     CC-Na 0 PVPP 0 

Mg 

stearat

e 

4 
 

  β-cyclodextrin 109.9 37 0.72 6.5 16 57.33 

Eslicarbaze

pine 
102 

Man

nitol 
150 

MC

C 
50.08     CC-Na 0 PVPP 60 

Mg 

stearat

e 

4 
 

  β-cyclodextrin 109.9 38 0.72 6.5 16 24.66 

Eslicarbaze

pine 
102 

Man

nitol 
150 

MC

C 
70.08     CC-Na 40 PVPP 0 

Mg 

stearat

e 

4 
 

  β-cyclodextrin 109.9 38 0.81 6.5 16 61.66 

Lornoxica

m 
4 

Man

nitol 
63.5 

MC

C 
15 

L-

HP

C 

3 CC-Na 7.5 
 

  

Mg 

stearat

e 

1 
Aerosi

l  
1 

Cyclodextrin 

Methacrylate 
0 24 0.42 2.14 12 7.4 

Lornoxica

m 
4 

Man

nitol 
63.5 

MC

C 
15 

L-

HP

C 

3 CC-Na 7.5 
 

  

Mg 

stearat

e 

1 
Aerosi

l  
1 

Cyclodextrin 

Methacrylate 
4 22 0.28 2.22 12 7.3 

Lornoxica

m 
4 

Man

nitol 
63.5 

MC

C 
15 

L-

HP

C 

3 CC-Na 7.5 
 

  

Mg 

stearat

e 

1 
Aerosi

l  
1 

Cyclodextrin 

Methacrylate 
12.21 23 0.36 2.21 12 7.4 

Meloxicam 7.5 
Man

nitol 
20 

MC

C 
40     PVPP 10 

 
  

Mg 

stearat

e 

1 
 

      27 0.99 2.03 9.58 46.17 

Miconazole 

nitrate 
56.5 

Man

nitol 
58 

MC

C 
58 

HP

MC 
4.7 CC-Na 4.8 

 
  

Mg 

stearat

e 

0 SDS 18     56 0.45 3.53 8 40 

Miconazole 

nitrate 
56.5 

Man

nitol 
78 

MC

C 
26 

HP

MC 
4.7 CC-Na 0 

 
  

Mg 

stearat

e 

0 SDS 24     66 0.67 3.02 8 35 

Miconazole 

nitrate 
56.5 

Man

nitol 
58 

MC

C 
58 

HP

MC 
4.7 CC-Na 14.4 

 
  

Mg 

stearat

e 

6 SDS 0     79 0.18 3.52 8 18 

Dextrometh

orphan  
15 

Man

nitol 
10 

MC

C 
25       

  
    

  
      37 0.76 3.64 9.53 21 

Dextrometh

orphan  
15 

Man

nitol 
10 

MC

C 
25       

  
    

  
      40 0.74 3.56 9.53 13.8 

Risperidon

e 
0.5 

Man

nitol 
1.3 

MC

C 
2.6 

PV

P 
0 CC-Na 0 

CMS-

Na 
0.5 

Aerosi

l  
50 

 
      

  
1.58 3 14.83 

Risperidon

e 
0.5 

Man

nitol 
1.3 

MC

C 
2.6 

PV

P 
0.5 CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.65 3 12.97 

Risperidon

e 
0.5 

Man

nitol 
2.6 

MC

C 
1.3 

PV

P 
0 CC-Na 0.5 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.65 3 2.99 

Risperidon

e 
0.5 

Man

nitol 
2.6 

MC

C 
1.3 

PV

P 
0 CC-Na 0 

CMS-

Na 
0.5 

Aerosi

l  
50 

 
      

  
1.66 3 4.39 

Risperidon

e 
0.5 

Man

nitol 
1.45 

MC

C 
1.45 

PV

P 
0 CC-Na 0 

CMS-

Na 
0.5 

Aerosi

l  
50 

 
      

  
1.64 3 15.91 
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Risperidon

e 
0.5 

Man

nitol 
2.6 

MC

C 
1.3 

PV

P 
0.5 CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.63 3 1.68 

Risperidon

e 
0.5 

Man

nitol 
2.6 

MC

C 
1.3 

PV

P 
0.5 CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.77 3 2.19 

Risperidon

e 
0.5 

Man

nitol 
1.3 

MC

C 
2.6 

PV

P 
0 CC-Na 0.5 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.67 3 8.01 

Risperidon

e 
0.5 

Man

nitol 
1.3 

MC

C 
2.6 

PV

P 
0.5 CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.61 3 3.93 

Risperidon

e 
0.5 

Man

nitol 
1.45 

MC

C 
1.45 

PV

P 
0 CC-Na 0 

CMS-

Na 
0.5 

Aerosi

l  
50 

 
      

  
1.63 3 9.17 

Risperidon

e 
0.5 

Man

nitol 
1.45 

MC

C 
1.45 

PV

P 
0.5 CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.65 3 2.41 

Risperidon

e 
0.5 

Man

nitol 
1.45 

MC

C 
1.45 

PV

P 
0.5 CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.6 3 2.61 

Risperidon

e 
0.5 

Man

nitol 
1.45 

MC

C 
1.45 

PV

P 
0.5 CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
50 

 
      

  
1.63 3 2.81 

Granisetron 50 
Man

nitol 
20 

MC

C 
55     CC-Na 0 

CMS-

Na 
5 

Aerosi

l  
2 

Mg 

stearat

e 

1.5     35 0.2 4.38 6 35 

Granisetron 50 
Man

nitol 
20 

MC

C 
52.5     CC-Na 0 

CMS-

Na 
7.5 

Aerosi

l  
2 

Mg 

stearat

e 

1.5     40 0.13 4.31 6 30 

Granisetron 50 
Man

nitol 
20 

MC

C 
55     CC-Na 5 

CMS-

Na 
0 

Aerosi

l  
2 

Mg 

stearat

e 

1.5     45 0.14 4.39 6 32 

Granisetron 50 
Man

nitol 
20 

MC

C 
52.5     CC-Na 7.5 

CMS-

Na 
0 

Aerosi

l  
2 

Mg 

stearat

e 

1.5     35 0.13 4.37 6 28 

Granisetron 50 
Man

nitol 
20 

 
52.5     CC-Na 0 

CMS-

Na 
0 

Aerosi

l  
2 

Mg 

stearat

e 

1.5     30 0.21 4.34 6 22 

Mefenamic 100 MCC 81.75 
 

      PVPP 32.5 
 

  
Aerosi

l  
32.5 

Mg 

stearat

e 

3.25     18 0.92 4.1 12 25 

Mefenamic 100 MCC 
181.7

5  
      PVPP 32.5 

 
  

Aerosi

l  
32.5 

Mg 

stearat

e 

3.25     22 0.65 3.8 12 25 

Atorvastati

n 
10 

Man

nitol 
175 

 
  

L-

HP

C 

15 CC-Na 15 
 

  

Mg 

stearat

e 

1.2 
 

      
    

30 

Atorvastati

n 
10 

Man

nitol 
182.6 

 
  

L-

HP

C 

15 CC-Na 15 
 

  

Mg 

stearat

e 

1.2 
 

      
    

30 

Montelukas

t 
5.2 

Man

nitol 
70 

MC

C 
48.8     PVPP 20 

 
  

Mg 

stearat
2 

 
  

Sodium 

Bicarbonate 
0 140 0.06 3.79 

 
40 
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e 

Montelukas

t 
5.2 

Man

nitol 
0 

MC

C 
116.8     PVPP 20 

 
  

Mg 

stearat

e 

2 
 

  
Sodium 

Bicarbonate 
16 97 0.11 3.78 

 
10 

Montelukas

t 
5.2 

Man

nitol 
0 

MC

C 
116.8     PVPP 6 

 
  

Mg 

stearat

e 

2 
 

  
Sodium 

Bicarbonate 
16 93 0.04 3.07 

 
15 

Montelukas

t 
5.2 

Man

nitol 
0 

MC

C 
92.41     PVPP 4.8 

 
  

Mg 

stearat

e 

1.596 
 

  
Sodium 

Bicarbonate 
12.80 158 0.17 3.79 

 
8 

Montelukas

t 
5.2 

Man

nitol 
0 

MC

C 
133.1     PVPP 6.8 

 
  

Mg 

stearat

e 

2.261 
 

  
Sodium 

Bicarbonate 
18.14 103 0.08 3.74 

 
35 

Montelukas

t 
5.2 

Man

nitol 
0 

MC

C 
110.8     PVPP 6 

 
  

Mg 

stearat

e 

2 
 

  
Sodium 

Bicarbonate 
22.01 85 0.06 3.77 

 
5 

Montelukas

t 
5.2 

Man

nitol 
0 

MC

C 
113.8     PVPP 9 

 
  

Mg 

stearat

e 

2 
 

  
Sodium 

Bicarbonate 
16 87 0.06 3.76 

 
10 

Amlodipine 5 
Man

nitol 
25 

MC

C 
40     PVPP 40 

 
  

Mg 

stearat

e 

2 SDS 1     29 0.12 4.06 9 19.8 

Nisoldipine 50 
Man

nitol 
70 

MC

C 
58 

PV

P 
40 CC-Na 10 PVPP 10 

Mg 

stearat

e 

2 
 

      
 

0.44 
 

8 36 

Nisoldipine 50 
Man

nitol 
70 

MC

C 
58 

PV

P 
0 CC-Na 10 PVPP 10 

Mg 

stearat

e 

2 
 

      
 

0.67 
 

8 30 

Nisoldipine 50 
Man

nitol 
70 

MC

C 
98     CC-Na 10 PVPP 10 

Mg 

stearat

e 

2 
 

      
 

0.52 
 

8 90 

Donepezil 10 
Man

nitol 
170.1 

 
      CC-Na 0 PVPP 56 

Mg 

stearat

e 

3 
 

      54 0.87 4.12 9.5 11 

Donepezil 10 
Man

nitol 
198.1 

 
      CC-Na 0 PVPP 28 

Mg 

stearat

e 

3 
 

      59 0.62 4.14 9.5 15 

Donepezil 10 
Man

nitol 
170.1 

 
      CC-Na 0 PVPP 0 

Mg 

stearat

e 

3 
 

      67 0.43 4.11 9.5 38 

Donepezil 10 
Man

nitol 
170.1 

 
      CC-Na 56 PVPP 0 

Mg 

stearat

e 

3 
 

      55 0.52 4.12 9.5 7.11 

Donepezil 10 Man 198.1 
 

      CC-Na 0 PVPP 0 Mg 3 
 

      69 0.57 4.12 9.5 73 
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nitol stearat

e 

Donepezil 10 
Man

nitol 
170.1 

 
      CC-Na 0 PVPP 56 

Mg 

stearat

e 

3 
 

      54 0.87 4.12 9.5 11 

Lamotrigin

e 
25 

Man

nitol 
47.05 

 
      PVPP 2.5 

 
  

Mg 

stearat

e 

0.75 
 

      40 0.84 
 

5 17.21 

Lamotrigin

e 
25 

Man

nitol 
44.25 

 
      PVPP 5 

 
  

Mg 

stearat

e 

0.75 
 

      40 0.27 
 

5 12.33 

Lamotrigin

e 
25 

Man

nitol 
44.25 

 
      PVPP 5 

 
  

Mg 

stearat

e 

0.75 
 

      10 1.03 
 

5 3.72 

Lamotrigin

e 
25 

Man

nitol 
45.25 

 
      PVPP 3.75 

 
  

Mg 

stearat

e 

1 
 

      10 1.52 
 

5 4.04 

Lamotrigin

e 
25 

Man

nitol 
45.75 

 
      PVPP 3.75 

 
  

Mg 

stearat

e 

0.5 
 

      10 1.36 
 

5 3.47 

Lamotrigin

e 
25 

Man

nitol 
45.25 

 
      PVPP 3.75 

 
  

Mg 

stearat

e 

1 
 

      40 0.42 
 

5 17.17 

Lamotrigin

e 
25 

Man

nitol 
56.5 

 
      PVPP 2.5 

 
  

Mg 

stearat

e 

1 
 

      25 2.1 
 

5 8 

Lamotrigin

e 
25 

Man

nitol 
44.5 

 
      PVPP 5 

 
  

Mg 

stearat

e 

0.5 
 

      25 0.68 
 

5 5.85 

Lamotrigin

e 
25 

Man

nitol 
45.75 

 
      PVPP 3.75 

 
  

Mg 

stearat

e 

0.5 
 

      40 0.64 
 

5 10.5 

Lamotrigin

e 
25 

Man

nitol 
46.5 

 
      PVPP 2.5 

 
  

Mg 

stearat

e 

1 
 

      25 0.49 
 

5 7.5 

Lamotrigin

e 
25 

Man

nitol 
45.5 

 
      PVPP 3.75 

 
  

Mg 

stearat

e 

0.75 
 

      25 0.46 
 

5 6.12 

Lamotrigin

e 
25 

Man

nitol 
46.5 

 
      PVPP 2.5 

 
  

Mg 

stearat

e 

0.75 
 

      10 1.7 
 

5 3.99 

Lamotrigin

e 
25 

Man

nitol 
45.5 

 
      PVPP 3.75 

 
  

Mg 

stearat

e 

0.75 
 

      25 0.51 
 

5 8.1 
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Clozapine 12.5 
Man

nitol 
94.6 

MC

C 
21     

CMS-

Na 
11.2 

 
  

Mg 

stearat

e 

0.7 
 

      31 0.68 
 

8.5 14.6 

Clozapine 12.5 
Man

nitol 
39.9 

MC

C 
21     

CMS-

Na 
11.2 

 
  

Mg 

stearat

e 

0.7 
 

  
2-hydroxypropyl-

β-cyclodextrin 
54.7 32 0.63 

 
8.5 15.3 

Tramadol 50 
Man

nitol 
172 

 
      PVPP 18 

 
  

Mg 

stearat

e 

2 
Aerosi

l  
10     31 0.55 

 
9 47 

Tramadol 50 
Man

nitol 
166 

 
      PVPP 18 

 
  

Mg 

stearat

e 

2 
Aerosi

l  
10     32 0.69 

 
9 34 

Tramadol 50 
Man

nitol 
172 

 
      PVPP 12 

 
  

Mg 

stearat

e 

2 
Aerosi

l  
2     34 0.58 

 
9 72 

Tramadol 50 
Man

nitol 
178 

 
      PVPP 18 

 
  

Mg 

stearat

e 

2 
Aerosi

l  
2     33 0.62 

 
9 61 

Sildenafil 29.8 
Man

nitol 
251.2 

 
      PVPP 13 

 
  

Mg 

stearat

e 

3 
Aerosi

l  
0     52 0.19 

 
10 25 

Sildenafil 29.8 
Man

nitol 
236.2 

 
      PVPP 13 

 
  

Mg 

stearat

e 

3 
Aerosi

l  
0     40 0.3 

 
10 26 

Sildenafil 29.8 
Man

nitol 
221.2 

 
      PVPP 13 

 
  

Mg 

stearat

e 

3 
Aerosi

l  
0     35 0.41 

 
10 25 

Sildenafil 29.8 
Man

nitol 
206.2 

 
      PVPP 13 

 
  

Mg 

stearat

e 

3 
Aerosi

l  
0     30 0.49 

 
10 26 

Sildenafil 29.8 
Man

nitol 
205.5 

 
      PVPP 13 

 
  

Mg 

stearat

e 

3 
Aerosi

l  
0.75     32 0.46 

 
10 27 

Sildenafil 29.8 
Man

nitol 
204.7 

 
      PVPP 13 

 
  

Mg 

stearat

e 

3 
Aerosi

l  
1.5     35 0.33 

 
10 26 

Sildenafil 29.8 
Man

nitol 
203.5 

 
      PVPP 13 

 
  

Mg 

stearat

e 

3 
Aerosi

l  
2.25     33 0.3 

 
10 27 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
18.87     PVPP 3.75 

 
  

Aerosi

l  
0.75 

 
      29 0.44 2.6 5.5 8.53 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
15.12     PVPP 7.5 

 
  

Aerosi

l  
0.75 

 
      22 0.38 2.57 5.5 10.17 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
11.37     PVPP 11.25 

 
  

Aerosi

l  
0.75 

 
      27 0.4 2.77 5.5 7.33 
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Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
18.87     PVPP 3.75 

 
  

Aerosi

l  
0.75 

 
      26 0.53 2.72 5.5 6 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
15.12     PVPP 7.5 

 
  

Aerosi

l  
0.75 

 
      25 0.48 2.74 5.5 11.17 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
11.37     PVPP 11.25 

 
  

Aerosi

l  
0.75 

 
      23 0.59 2.83 5.5 7.17 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
18.87     PVPP 3.75 

 
  

Aerosi

l  
0.75 

 
      25 0.37 2.67 5.5 7 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
18.87     PVPP 3.75 

 
  

Aerosi

l  
0.75 

 
      28 0.49 2.68 5.5 28.5 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
15.12     PVPP 7.5 

 
  

Aerosi

l  
0.75 

 
      24 0.54 2.67 5.5 16.33 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
11.37     PVPP 11.25 

 
  

Aerosi

l  
0.75 

 
      24 0.62 2.66 5.5 26 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
21.87     PVPP 0.75 

 
  

Aerosi

l  
0.75 

 
      23 0.55 2.54 5.5 33 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
20.37     PVPP 2.25 

 
  

Aerosi

l  
0.75 

 
      25 0.46 2.46 5.5 21.17 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
18.87     PVPP 3.75 

 
  

Aerosi

l  
0.75 

 
      25 0.39 2.7 5.5 15.33 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
18.87     PVPP 3.75 

 
  

Aerosi

l  
0.75 

 
      27 0.29 2.54 5.5 15.67 

Ondansetro

n 
8 

Man

nitol 
22.5 

MC

C 
17     PVPP 5.63 

 
  

Aerosi

l  
0.75 

 
      26 0.33 2.62 5.5 13.67 

Diclofenac 

sodium 
50 MCC 10 

Lact

ose 
131 

    

  
 

 

  

Aerosi

l  
5 

Mg 

stearat

e 

4 

    

55 0.68 
  

8.5 

Fenoverine 100 
Man

nitol 
93.75 

MC

C 
37.5     

CC-Na 10 
 

  
Aerosi

l  
2.5 

Mg 

stearat

e 1.25     30 

 

5.5 8 70 

Fenoverine 100 
Man

nitol 
88.75 

MC

C 
37.5     

CC-Na 15 
 

  
Aerosi

l  
2.5 

Mg 

stearat

e 1.25     27 

 

5.5 8 55 

Fenoverine 100 
Man

nitol 
83.75 

MC

C 
37.5     

CC-Na 20 
 

  
Aerosi

l  
2.5 

Mg 

stearat

e 1.25     25 

 

5.5 8 40 

Fenoverine 100 
Man

nitol 
93.75 

MC

C 
37.5     

PVPP 10 
 

  
Aerosi

l  
2.5 

Mg 

stearat

e 1.25     24 

 

5.5 8 21 

Fenoverine 100 
Man

nitol 
88.75 

MC

C 
37.5     

PVPP 15 
 

  
Aerosi

l  
2.5 

Mg 

stearat

e 1.25     24 

 

5.6 8 19 

Fenoverine 100 
Man

nitol 
83.75 

MC

C 
37.5     

PVPP 20 
 

  
Aerosi

l  
2.5 

Mg 

stearat

e 1.25     23 

 

5.5 8 18 
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Fenoverine 100 
Man

nitol 
93.75 

MC

C 
37.5     

CMS-

Na 
10 

 
  

Aerosi

l  
2.5 

Mg 

stearat

e 1.25     25 

 

5.6 8 37 

Fenoverine 100 
Man

nitol 
88.75 

MC

C 
37.5     

CMS-

Na 
15 

 
  

Aerosi

l  
2.5 

Mg 

stearat

e 1.25     26 

 

5.4 8 30 

Fenoverine 100 
Man

nitol 
83.75 

MC

C 
37.5     

CMS-

Na 
20     

Aerosi

l  
2.5 

Mg 

stearat

e 1.25     25   5.6 8 31 
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Table 2 The accuracies of OFDT on training, testing, and final testing sets 

Network 
Training Set  

(%) 

Validation Set  

(%) 

Testing Set  

(%) 

ANN 85.60 80.00 75.00 

DNN 85.60 85.00 80.00 
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