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Abstract: Mucoadhesive drug delivery systems are desirable as they can increase the residence
time of drugs at the site of absorption/action, provide sustained drug release and minimize
the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that
exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive
dosage forms. However, its limited mucoadhesive strength and limited water-solubility at
neutral and basic pHs are considered as two major drawbacks of its use. Chemical modification
of chitosan has been exploited to tackle these two issues. In this review, we highlight the
up-to-date studies involving the synthetic approaches and description of mucoadhesive properties
of chitosan and chitosan derivatives. These derivatives include trimethyl chitosan, carboxymethyl
chitosan, thiolated chitosan, chitosan-enzyme inhibitors, chitosan-ethylenediaminetetraacetic acid
(chitosan-EDTA), half-acetylated chitosan, acrylated chitosan, glycol chitosan, chitosan-catechol,
methyl pyrrolidinone-chitosan, cyclodextrin-chitosan and oleoyl-quaternised chitosan. We have
particularly focused on the effect of chemical derivatization on the mucoadhesive properties of
chitosan. Additionally, other important properties including water-solubility, stability, controlled
release, permeation enhancing effect, and in vivo performance are also described.

Keywords: chitosan derivatives; mucosal drug delivery; mucoadhesion; trimethyl chitosan; thiolated
chitosan; chitosan-catechol; acrylated chitosan

1. Introduction

Mucus is a viscoelastic gel lining the mucosal tissues exposed to the external environment
including gastrointestinal, respiratory, and reproductive tracts and the eyes [1,2]. It is mainly composed
of water (~90 to 98%), mucins (0.2–5% w/w), salts (~0.5 to 1.0% w/w), proteins (~0.5% w/v), cells and
cellular debris, DNA, bacteria and lipids [1–7]. Mucins are the main component of the mucus, which
are glycoproteins responsible for its gel-like characteristics. These glycoproteins are made of protein
core to which carbohydrate side chains are covalently attached via O-glycosidic linkages [8,9].

Conventional (non-mucoadhesive) formulations lack the ability to withstand the strong
involuntary muscular movement as well as the extensive washing effect by certain body fluids
available, e.g., in the gastrointestinal lumen, ocular surface, urinary bladder and other mucosal
surfaces. This limitation leads to the loss of a substantial amount of the administered drugs at the
site of application/absorption. This may not only result in the overall increased cost of the treatment
courses; it can also lead to the failure of therapy as effective drug concentration cannot be reached.
This is especially more important in case of drugs such as antibiotics as amount lower than minimum
inhibitory concentration probably leads to intractable complications including bacterial resistance.
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Mucoadhesive drug delivery systems are advantageous as they can adhere to the mucus layer of
the mucous membrane. The adhesion of the delivery systems to mucosa (defined as mucoadhesion)
increases the residence time of drugs, increases the concentration gradient, and protects the vulnerable
small molecular weight drugs as well as peptide-based drugs. The overall effects could lead to
controlled drug release, prolongation of therapeutic effects, enhancement in the bioavailability,
cost-effective treatment, and improved patient compliance [2,9–12]. However, transmucosal drug
delivery systems often have poor residence on mucosal surfaces, which justifies the need for novel
mucoadhesive materials.

Various polymers have been used in the formulation of mucoadhesive delivery systems. Among them,
chitosan and its derivatives are listed at the top [2,4,13–16]. Chitosan is a polysaccharide composed of
N-acetyl-D-glucosamine and D-glucosamine and its units linked by 1-4-β-glycosidic bonds (Figure 1).
It can be prepared by deacetylation of chitin in basic media [17,18]. Chitin is the second most abundant
polysaccharide in nature, while cellulose is the most abundant [18]. Crustaceans produce chitin in their
shells and plants produce cellulose in their cell walls. Therefore, these two polysaccharides impart
structural integrity and protection to animals and plants [19].
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Figure 1. Chemical structure of chitosan. 

Chitosan has –OH and –NH2 groups leading to the capability of forming hydrogen and 
covalent bonding. This characteristic results in the possibilities of various chitosan chemical 
derivatization. These functional groups also play an essential role in the solubility character of 
chitosan macromolecules. At low pH, the amino groups undergo protonation, which makes chitosan 
macromolecules positively charged. This cationic nature provides strong electrostatic interaction 
with negatively charged components of mucus including sialic acid as well as epithelial surfaces 
[2,8,15,20–23]. Hydrogen bonding and hydrophobic interaction also play important role in the 
mucoadhesion of chitosan [15]. 

The derivatization of chitosan to improve its mucoadhesive properties has been considered in 
several publications (Figure 2). Some chitosan and its derivatives have shown potential in preclinical 
and clinical investigations for applications in transmucosal drug delivery (e.g., ChiSys® as a platform 
for nasal vaccination [24] and Lacrimera® eye drops [25]). However, there is still lack of review 
articles analyzing recent studies on the mucoadhesive applications of chitosan derivatives. In this 
review, we report various chitosan derivatives with potential applications as mucoadhesive 
materials. This review, however, does not consider any physical mixtures of chitosan or salt forms, 
which are discussed in several previous publications [26,27]. 

Figure 1. Chemical structure of chitosan.

Chitosan has –OH and –NH2 groups leading to the capability of forming hydrogen and
covalent bonding. This characteristic results in the possibilities of various chitosan chemical
derivatization. These functional groups also play an essential role in the solubility character
of chitosan macromolecules. At low pH, the amino groups undergo protonation, which makes
chitosan macromolecules positively charged. This cationic nature provides strong electrostatic
interaction with negatively charged components of mucus including sialic acid as well as epithelial
surfaces [2,8,15,20–23]. Hydrogen bonding and hydrophobic interaction also play important role in
the mucoadhesion of chitosan [15].

The derivatization of chitosan to improve its mucoadhesive properties has been considered in
several publications (Figure 2). Some chitosan and its derivatives have shown potential in preclinical
and clinical investigations for applications in transmucosal drug delivery (e.g., ChiSys® as a platform
for nasal vaccination [24] and Lacrimera® eye drops [25]). However, there is still lack of review
articles analyzing recent studies on the mucoadhesive applications of chitosan derivatives. In this
review, we report various chitosan derivatives with potential applications as mucoadhesive materials.
This review, however, does not consider any physical mixtures of chitosan or salt forms, which are
discussed in several previous publications [26,27].
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Fluorescent samples were deposited onto ex vivo mucosal tissues (e.g., porcine urinary bladder or 
bovine eyes) and washed with bio-relevant fluids. Fluorescence images were taken after several 
wash cycles and the fluorescence intensity was used to compare the retention of each material on the 
mucosal tissues. We observed excellent mucoadhesive properties of chitosan in all cases, although 
some differences in the extent of its mucoadhesive potential in different mucosal tissues were 
noticed [37–39]. Figure 3 shows the result of mucoadhesion study of different silica nanoparticles in 
porcine urinary bladder ex vivo. The fluorescence signal of chitosan after washing was more intense 
compared to other materials and this indicated its excellent mucoadhesive properties. The rank of 
retention of materials was as follows: FITC-chitosan > thiolated silica nanoparticles > PEGylated 
(polyethylene glycol, 750 Da) silica nanoparticles > PEGylated (5000 Da) silica nanoparticles > 
FITC-dextran [37]. 
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Figure 2. Number of publications related to mucoadhesive properties of chitosan and chitosan
derivatives, source: SciFinder, keywords: chitosan or chitosan derivatives and mucoadhesion, retrieved
on 24 November 2017.

2. Chitosan as a Mucoadhesive Material

Chitosan has been widely used in various biomedical and drug delivery areas because of its low
toxicity, biocompatibility, antimicrobial activity, mucoadhesive properties and permeation enhancing
effects [4,15,18,28–32]. It has been extensively studied as a potential excipient for the oral delivery
of peptides [33]. Alonso and co-workers found that chitosan nanocapsules enhanced and prolonged
intestinal absorption of salmon calcitonin because of their mucoadhesive properties and strong
interactions with the intestinal barrier [34].

Our group has demonstrated the mucoadhesive character of chitosan in several studies. We have
used a range of techniques including mucin-particle interaction [15], tensile strength [35] and most
recently flow-through technique coupled with fluorescence microscopy [36,37]. In the latest case,
fluorescein isothiocyanate-chitosan (FITC-chitosan) was used as a positive control and compared to
other materials as well as FITC-dextran (non-mucoadhesive or negative control). Fluorescent samples
were deposited onto ex vivo mucosal tissues (e.g., porcine urinary bladder or bovine eyes) and washed
with bio-relevant fluids. Fluorescence images were taken after several wash cycles and the fluorescence
intensity was used to compare the retention of each material on the mucosal tissues. We observed
excellent mucoadhesive properties of chitosan in all cases, although some differences in the extent
of its mucoadhesive potential in different mucosal tissues were noticed [37–39]. Figure 3 shows the
result of mucoadhesion study of different silica nanoparticles in porcine urinary bladder ex vivo.
The fluorescence signal of chitosan after washing was more intense compared to other materials
and this indicated its excellent mucoadhesive properties. The rank of retention of materials was as
follows: FITC-chitosan > thiolated silica nanoparticles > PEGylated (polyethylene glycol, 750 Da) silica
nanoparticles > PEGylated (5000 Da) silica nanoparticles > FITC-dextran [37].
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incubated with FITC-chitosan, thiolated silica, PEGylated silica (750 Da), PEGylated silica (5000 Da) and
FITC-dextran and washed with different volumes of artificial urine solution. Scale bar = 200 µm. [37].

Behrens et al. [40] studied interactions of polystyrene, chitosan, polylactide (PLA)-PEG
nanoparticles with two types of human intestinal cell lines, the enterocyte-like Caco-2 and
mucus-secreting MTX-E12 cells. They revealed that the nanoparticles associated with Caco2 cells in the
following order: polystyrene > chitosan > PEG-PLA. On the other hand, chitosan nanoparticles strongly
bound to the mucus secreting cells and the binding of polystyrene nanoparticles was significantly
decreased. PEG-PLA did not show any association with the mucus secreting cells. Intraduodenal
administration of chitosan nanoparticles demonstrated that they could be internalized in both epithelial
cells and Peyer’s patches. The mechanism of the transport of chitosan and polystyrene nanoparticles
was studied using Caco2 cells. It was found that chitosan nanoparticles were internalized by adsorptive
endocytosis, whereas non-adsorptive endocytosis could be involved with polystyrene nanoparticles.
Decreasing the temperature of incubation (4 ◦C) significantly decreased the transport of both types
of nanoparticles. Addition of 1 mM protamine sulfate (inhibitor of active transport process) and
pre-treatment of the cells with 10 U/mL heparinase II or 35 mM sodium chlorate (led to de-sulfation
and the removal of anionic sites of mucus and cell membranes) significantly reduced the cellular
transport of chitosan nanoparticles. However, the transport of polystyrene nanoparticles did not
change with these factors. Chitosan endocytosis was saturable, i.e., cellular association increased
linearly with concentration (31.25–1000 µg/mL) and reached a steady state at some point. Other studies
have also reported the cellular uptake enhancing effect of chitosan, which could occur by adsorptive
endocytosis, where a positively-charged coated nanoparticles adhere strongly to the negatively charged
components of the cell membranes [41].

Thongborisute et al. [42] investigated the mucoadhesion and muco-penetration of chitosan
solution, liposomes and chitosan-coated liposomes in rat small intestine in ex vivo and in vivo models.
The systems were fluorescently labelled with FITC and administered orally to male Wistar rats or in
the ex vivo model rats were sacrificed and the samples were incubated to interact with the mucosal
tissues for 1 h at 37 ◦C. To visualize the penetration of these materials, cross-sections of 3 different
regions of the small intestine (duodenum, jejunum, and ileum) were obtained and examined with
confocal laser scanning microscopy (CLSM). They showed that chitosan, non-coated liposomes, and
chitosan-coated liposomes could adhere and penetrate the mucosal tissues. However, the extent of
adhesion and penetration of chitosan-coated liposomes was greater than for non-coated liposomes.
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The authors related this behavior to firstly, the mucoadhesive properties of chitosan. Secondly, the
presence of chitosan on the surface of liposomes could result in the formation of large aggregates
due to the interactions of chitosan macromolecules leading to the large network of chitosan-coated
liposomes adhering to the mucus layer. This phenomenon is not observed in the case of non-coated
liposomes and only individual particles disperse in the suspension. Interestingly, although the authors
did not discriminate the mucoadhesion and the mucosal penetration, they observed more mucosal
penetration in the ileum region compared to both duodenum and jejunum, which they believe was
due to the thicker nature of the ileum, which is also supported by other studies ([43–45]. Deacona et
al. [46] also revealed the difference in the mucoadhesive interactions of chitosan in different regions of
porcine stomach by sedimentation velocity technique using analytical ultracentrifuge equipped with
conventional Philpott-Svensson Schlieren optical systems and coupled on-line to a charge-coupled
device (CCD) camera. The cardiac region displayed the strongest interaction with chitosan compared
to corpus and antrum.

3. Problems of Chitosan in Mucosal Drug Delivery

Being a basic polymer, chitosan is mucoadhesive only at limited pHs and is only soluble at acidic
pH (pH < 6) [17,47]. The requirement of decreasing the pH of chitosan vehicles limits its applications
in drug and gene delivery as many biomolecules including DNA, proteins and peptide-based drugs
are not stable at low pH [48]. Additionally, even acidic chitosan formulations will encounter neutral
to basic pHs once they administered into the human body either topically or systemically. High pH
environment results in the precipitation of chitosan and can affect the performance of the carrier
systems [17].

Chitosan-based mucosal drug delivery systems have been investigated to increase the residence
time of drugs on the application/absorption sites [30,33,35]. The increase in the residence time is
advantageous as it may prolong the action of drugs and provides sustained drug release. However,
with unmodified chitosan, this is only possible to a certain degree. Therefore, there is an obvious need
for further controlled drug release with subsequent prolongation of drug action [49].

Several modifications of chitosan have been investigated to enhance its mucoadhesive properties.
In the next sections, we will discuss various chitosan derivatives with potential applications in
transmucosal drug delivery.

4. Mucoadhesive Chitosan Derivatives

4.1. Trimethyl Chitosan (TMC)

TMC is a chitosan derivative which is always positively charged. This persistent cationic nature
makes it one of the strongest mucoadhesive polymers. It has a much wider pH solubility range than
unmodified chitosan due the presence of protonated groups (–N+(CH3)3) [16]. TMC can be synthesized
by three general methods: indirect trimethylation [50,51], direct trimethylation [52,53] and protection
of chitosan hydroxyl groups (at C-3 and C-6 positions) by O-silylation [54]. The first method is usually
a two-step process including the formation of an intermediate product (N,N-dimethyl chitosan) and
can be conducted using two different reaction conditions. Whereas, the second method is a one-step
process and does not contain any intermediate product, but it can also be conducted using two different
reaction conditions. Using either indirect or direct trimethylation can often result in the formation of
O-methylated TMC. However, using hydroxyl protection method by O-silylation, e.g., by employing
tert-butyldimethylsilyl chloride, O-methylation can be avoided [16,50–55]. Verheul et al. [51] also
claimed that their synthetic approach can result in O-methyl free TMC. The synthetic pathway for each
method is illustrated in Figures 4–6. For the details of the experimental methods of TMC synthesis,
readers are referred to two recent reviews by Wu et al. [55] and Kulkarni et al. [16].
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O-silylation according to Benediktsdóttir et al. [54].

TMC has been synthesized so as to enhance the water-solubility of chitosan with wider
applications in drug delivery [56]. Subsequently, Sieval et al. [52] studied the effect of a few variables
including the number of reaction steps, the duration of each reaction step and the amount of methyl
iodide as a reagent. It was found that 2-step reaction resulted in products with high degree of
substitution (40–80%). However, 3-step reaction led to even greater degree of substitution but at the
same time water-solubility of the resulting product decreased.

Jintapattanakit et al. [57] synthesized TMC by reductive methylation of chitosan. TMC was
then PEGylated. Both polymers were then fluorescently labelled using tetramethyl-rhodamine
isothiocyanate (TRITC) and Oregon Green carboxylic acid succinimidyl ester (Oregon Green 448).
The insulin-loaded nanoparticles were synthesized using self-assembly technique. The influence of
TMC PEGylation and its positive charge density on mucoadhesive properties were assessed using a
mucin assay and mucus-secreting HT29-MTX-E12 (E12) monolayers. It was found that introduction of
PEG improved the mucoadhesive effect of TMC. This could be due to the interpenetration of PEG with
mucus. In some other studies, PEGylation of chitosan also shown reduced toxicity and significantly
increased the cellular permeation of hydrophilic macromolecules including FITC-dextran [23,58].

Hauptstein et al. [59] also studied the effect of PEGylation as well as thiolation (will be
discussed in the next section) on adhesion of chitosan’s compressed discs to porcine intestinal mucosa.
They synthesized PEG-bearing thiolated chitosan by conjugating thiol-bearing polyoxyethylene
ligand [O-(3-carboxylpropyl)-O′-[2-[3-mercaptopropionylamino)ethyl]-polyethyleneglycol] to amino
groups of chitosan. The reaction was mediated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
hydrochloride (EDAC)/N-hydroxysuccinimide (NHS). In addition to its solubility in basic media,
PEG-bearing thiolated chitosan showed greater mucoadhesive strength compared to unmodified
chitosan. However, it was equally mucoadhesive as thiolated chitosan. Moreover, PEG-bearing
thiolated chitosan enhanced the permeation of FITC-dextran through rat intestinal mucosa and Caco2
cells monolayer. The enhancement in mucoadhesion is based on the formation of disulfide bridges
with mucus glycoproteins. The permeation enhancing effect could be due to the interaction of thiol
groups of the thiolated chitosans with protein tyrosine phosphatase enzyme, which modulates the
tight junction by a glutathione-dependent process.

Sayın et al. [60] demonstrated a novel approach for formation of nanoparticles via complexation
between cationic TMC and polyampholytic N-carboxymethylchitosan without a crosslinker.
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The nanoparticles were loaded with FITC-BSA (bovine serum albumin) and their cellular uptake
was studied. A significant number of the nanoparticles was taken up by murine macrophage J774A.1
within 30 min of incubation. The authors believed that the mucoadhesive effect of TMC plays a major
role in the enhancement of the cellular uptake. The nasal administration of tetanium toxiod-loaded
283 nm nanoparticles in mice, induced the mucosal and systemic immune responses.

Sajomsang et al. [61] synthesized two methylated N-aryl chitosan derivatives, methylated
N-(4-N,N-dimethylaminocinnamyl) chitosan chloride and methylated N-(4-pyridylmethyl) chitosan
chloride by reductive amination and methylation of chitosan. It was found that increasing the degree of
quaternization led to a stronger mucin-particle interaction. Moreover, the cytotoxicity was dependent
on the polymer structure, the location of the positive charge and the molecular weight after methylation.

On the other hand, some studies showed that TMC has greater potential to adhere to the
epithelial tissue than to the mucin. For instance, Keely et al. [62] evaluated the adhesion of
coumarin-labelled-poly(2-dimethylaminoethyl) methacrylate (pDMAEMA) with different levels of
quaternization (0, 10, 24 and 32%) and TMC to human mucus-secreting and non-mucus-secreting
intestinal cell monolayers (E12 and HT29, respectively) as well as freshly excised rat intestinal mucosa
using non-everted intestinal sacs model. CLSM, light and fluorescence microscopy were used to
quantify either mucoadhesion (adhesion to the mucus layer) or bioadhesion (adhesion to the epithelial
tissue rather than mucosal surface). It was found that pDMAEMA, regardless of the degree of
quaternization, was more mucoadhesive than bioadhesive, whereas TMC was found to be more
bioadhesive and as mucoadhesive as unquaternized pDMAEMA and 24% quaternized pDMAEMA.
When E12 cells and intestinal sacs were treated with mucolytic agent, N-acetylcysteine, for 15 min, the
mucoadhesion of pDMAEMA polymers was significantly decreased, while the bioadhesion of TMC
had not changed following this treatment. Additionally, the permeability of FITC-dextran through
both E12 cells monolayer and intestinal sacs was significantly decreased in the presence of pDMAEMA,
whereas the use of TMC led to a significant increase in the permeability. Although they did not study
the interactions between the polymers and the mucus, the authors claimed that pDMAEMA perhaps
increased the viscosity of the mucus gel as in case of carbopol [63] and thus impede the diffusion of
FITC-dextran. However, chitosan and its derivatives can open the tight junctions [64–66] that could
enhance the paracellular diffusion of FITC-dextran.

Liu et al. [67] developed core-shell nanoparticles based on TMC. The nanoparticles were coated
with dissociable layer of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA). The diffusion
of coated and uncoated nanoparticles in human cervicovaginal mucus was evaluated using multiple
particle tracking technique and Ussing chamber. Cellular internalization and transport were evaluated
using E12 cells. It was found that pHPMA coating could enhance the diffusion of TMC nanoparticles
through both mucus and epithelial layer. Non-coated TMC nanoparticles were found to be less
diffusive in both mucus and the cells. Liu et al. [67] indirectly demonstrated the mucoadhesive
properties of TMC.

Generally, mucoadhesive properties of chitosan could be affected by both the degree of
quaternization and its molecular weight. Nazar et al. [68] prepared TMC thermosensitive nasal
gel from low, medium, and high molecular weight chitosan with quaternization of 25.6 to 61.3%. It was
found that gels made from lower quaternization and medium molecular weight TMC had the greatest
work of adhesion (252 ± 14 µJ) and the shortest sol-gel transition time (7 min) at 32.5 ◦C. This could be
due to their great capacity to hydrate and absorb large amounts of water. Partially quaternized TMC
has the advantage of having a better water solubility profile in neutral and basic environment than
the native chitosan [69]. This is important since absorption of most drugs happens at slightly basic or
neutral part of the gastrointestinal tract [70].

TMC has been used as an absorption enhancer for the delivery of buserelin and insulin across
Caco-2 cells monolayers. Although at low concentrations TMC is a less active absorption enhancer than
both chitosan hydrochloride and chitosan glutamate, increasing its concentration could increase its
activity. Since it is more soluble than both chitosan salts, increasing TMC concentration is very unlikely
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to cause precipitation, however, it resulted in an increase in the transport rate of both buserelin and
insulin across Caco-2 cell monolayers, which might be due to the decrease in transepithelial electrical
resistance (TEER) [71]. TEER is a parameter, which determines the intercellular ion flux and indicates
the tightness of paracellular “junctional complexes” of biological membranes [72].

4.2. Carboxymethyl Chitosans

Carboxymethyl chitosan is another derivative of chitosan with amphoteric properties, acting as
both acid and base depending on the pH of its solution. The amphoteric properties originate from
the presence of both amino (basic) and carboxylic (acidic) groups in its chemical structure [73–75].
The amino groups undergo protonation in acidic media and make carboxymethyl chitosan positively
charged. On the other hand, in basic media carboxylic groups dissociate and impart carboxymethyl
chitosan negative charged.

Chen and Park [76] studied the pH-solubility profile of various O-carboxymethyl chitosans
synthesized at different reaction conditions (temperature and ratio of water/isopropanol).
The resultant chitosans showed a pH-dependent water-solubility character. Based on the degree
of substitution, carboxymethyl chitosans (0.2 mg/mL) were insoluble at pH ranges close to neutral.
However, at highly acidic and basic pHs, they demonstrated complete water-solubility. It was found
that using low temperature (0 and 10 ◦C, during the synthesis) resulted in completely water-soluble
products but with low yield. Increasing the temperature and decreasing the water/isopropanol ratio
resulted in more carboxymethylation, which subsequently shifted the region of insolubility towards the
lower pH (~3). Vikhoreva and Gal’braikh [77] also reported that carboxymethyl chitosan was insoluble
at pH range of 3.5–6.5, whereas it showed complete solubility at pH < 3.5 and > 6.5. The insolubility at
those pH ranges could be due to the fact that the isoelectric point of carboxymethyl chitosan is 4.1 and
therefore when the pH of the solution is near the isoelectric point, precipitation and aggregation could
happen [73].

Generally, carboxymethyl chitosans can be prepared using two different approaches, which are
reductive alkylation and direct alkylation. In case of reductive alkylation, the amino groups of chitosan
react with aldehyde groups of glyoxylic acid to form an intermediate imine product, which then is
hydrogenated using sodium borohydride or sodium cyanoborohydride. The ratio of glyoxylic acid to
chitosan is important in determining whether mono- or di-carboxymethyl chitosan is formed. Direct
alkylation can be performed by reacting chitosan with some alkyl halides, such as monochloroacetic
acid, in the presence of inorganic bases including sodium bicarbonate and sodium carbonate to raise
the pH to 8.0–8.5. The pH of the reaction mixture is considered to be one of the important factors
in determining whether O-, N- or O, N-substitution takes place [74,78–80]. Also, the higher pH
resulted in a greater degree of substitution [81]. Figure 7 shows the pathways for the synthesis of
carboxymethyl chitosans.



Polymers 2018, 10, 267 10 of 37
Polymers 2018, 10, x FOR PEER REVIEW  10 of 38 

 

 
Figure 7. Schematic representation of the synthesis of carboxymethyl chitosans using reductive (1) 
[73] and direct (2) alkylation [79] methods. 

Di Colo et al. [82] studied the effect of chitosan and N-carboxymethyl chitosan on the ocular 
pharmacokinetics of ofloxacin. Chitosan enhanced the penetration of the drug through the ocular 
tissue and its maximum concentration (Cmax) in the aqueous humor was greater than in the case 
when conventional eye drops (Exocin® eye drops) and reference formulation (polyvinyl 
alcohol-based ofloxacin solution) were used. This may be due to the tight junction opening effect of 
chitosan. N-carboxymethyl chitosan did not significantly enhance the Cmax of the drug in the aqueous 
humor. However, it resulted in a steady state drug concentration from 30–150 min post-ocular 
administration. The authors measured the viscosity of the three formulations and found that they 
were approximately similar. However, they still claimed that the viscosity enhancement is one of the 
reasons for the enhancement of pre-ocular drug residence time compared to the reference 
formulation. The binding of ofloxacin to N-carboxymethyl chitosan due to hydrogen bonding 
between amino groups of the drug and hydroxyl groups of the polymer, is also a reason for both the 
decrease in the ocular drug penetration and the increase in the residence time [82]. Although they 
did not evaluate the mucoadhesive properties of these polymers, they hypothesized that it could 
have an impact on the increased residence time in the ocular tissues. Clearly, the residence time of a 
formulation on the ocular tissues will be related to their mucoadhesive properties. 

N-carboxymethyl chitosan has also been used as an intestinal absorption enhancer and proved 
to increase the in vitro and in vivo transmucosal absorption of low molecular weight heparin [73]. It 
has also showed potential in the oral delivery of small molecules. Prabaharan and Gong [83] 
synthesized thiolated carboxymethyl chitosan-g-β-cyclodextrin and showed its potential for the oral 
delivery of lipophilic drug ketoprofen. The modified chitosan resulted in 5-fold improvement in the 
adhesion to rat intestinal mucosa and slower drug release. 

4.3. Thiolated Chitosans 

Thiolation is one of the techniques used to functionalize various polymers including chitosan 
using thiolating agents bearing thiol groups. These include cysteine [84], thioglycolic acid (TGA) 
[85], 2-iminothiolane or 4-thiobutylamidine (TBA) [86], N-acetyl cysteine [87], 
isopropyl-S-acetylthioacetimidate [88] and glutathione [89]. This technique has been pioneered by 
Bernkop-Schnürch and co-workers [90] to enhance the mucoadhesion of polymers for 
pharmaceutical and biomedical applications. Thiolated chitosans are now one of the extensively 
studied mucoadhesive materials. Despite their superior mucoadhesive properties, they also have 
some permeation enhancing effects, ability to inhibit efflux pumps and in situ gelling properties [25]. 
Figure 8 shows the synthetic pathways to different thiolated chitosans. 

Figure 7. Schematic representation of the synthesis of carboxymethyl chitosans using reductive (1) [73]
and direct (2) alkylation [79] methods.

Di Colo et al. [82] studied the effect of chitosan and N-carboxymethyl chitosan on the ocular
pharmacokinetics of ofloxacin. Chitosan enhanced the penetration of the drug through the ocular
tissue and its maximum concentration (Cmax) in the aqueous humor was greater than in the case
when conventional eye drops (Exocin® eye drops) and reference formulation (polyvinyl alcohol-based
ofloxacin solution) were used. This may be due to the tight junction opening effect of chitosan.
N-carboxymethyl chitosan did not significantly enhance the Cmax of the drug in the aqueous humor.
However, it resulted in a steady state drug concentration from 30–150 min post-ocular administration.
The authors measured the viscosity of the three formulations and found that they were approximately
similar. However, they still claimed that the viscosity enhancement is one of the reasons for the
enhancement of pre-ocular drug residence time compared to the reference formulation. The binding of
ofloxacin to N-carboxymethyl chitosan due to hydrogen bonding between amino groups of the drug
and hydroxyl groups of the polymer, is also a reason for both the decrease in the ocular drug penetration
and the increase in the residence time [82]. Although they did not evaluate the mucoadhesive properties
of these polymers, they hypothesized that it could have an impact on the increased residence time in
the ocular tissues. Clearly, the residence time of a formulation on the ocular tissues will be related to
their mucoadhesive properties.

N-carboxymethyl chitosan has also been used as an intestinal absorption enhancer and proved to
increase the in vitro and in vivo transmucosal absorption of low molecular weight heparin [73]. It has
also showed potential in the oral delivery of small molecules. Prabaharan and Gong [83] synthesized
thiolated carboxymethyl chitosan-g-β-cyclodextrin and showed its potential for the oral delivery of
lipophilic drug ketoprofen. The modified chitosan resulted in 5-fold improvement in the adhesion to
rat intestinal mucosa and slower drug release.

4.3. Thiolated Chitosans

Thiolation is one of the techniques used to functionalize various polymers including
chitosan using thiolating agents bearing thiol groups. These include cysteine [84], thioglycolic
acid (TGA) [85], 2-iminothiolane or 4-thiobutylamidine (TBA) [86], N-acetyl cysteine [87],
isopropyl-S-acetylthioacetimidate [88] and glutathione [89]. This technique has been pioneered by
Bernkop-Schnürch and co-workers [90] to enhance the mucoadhesion of polymers for pharmaceutical
and biomedical applications. Thiolated chitosans are now one of the extensively studied mucoadhesive
materials. Despite their superior mucoadhesive properties, they also have some permeation enhancing
effects, ability to inhibit efflux pumps and in situ gelling properties [25]. Figure 8 shows the synthetic
pathways to different thiolated chitosans.
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4.3.1. Chitosan-Cysteine

In 1999, Bernkop-Schnürch et al. [84] synthesized chitosan-cysteine conjugate by covalent
attachment of cysteine to chitosan mediated by carbodiimide, where the amount of bound-cysteine was
increased with an increase in the amount of the mediator reaching 1.2%. Subsequent mucoadhesion
study revealed no significant difference between chitosan and thiolated chitosan. However, thiolated
chitosan tablets showed superior cohesion over the chitosan tablets which could be due to the formation
of intra/intermolecular disulfide bonds as a result of the oxidation of the thiol groups in thiolated
chitosan. This improved cohesion is desirable not only for the mucoadhesion but also for the design of
controlled release dosage forms [14,84].

TMC has also been thiolated by reacting with cysteine mediated with EDAC/N-NHS.
Insulin-loaded nanoparticles were prepared using polyelectrolyte complexation method. The resultant
TMC-cysteine showed significantly greater mucoadhesion capacity compared to unmodified TMC in
both rat ileal loop and mucin adsorption models. This might be due firstly to the electrostatic interaction
between positively charged chitosan and negatively charged sialic acid of mucin glycoproteins leads
to the interpenetration of the polymer and mucin. Secondly, at neutral pH (pH of small intestine) the
thiol groups of TMC-cysteine could be oxidized by reacting with cysteine-rich domains of mucin leads
to the formation of disulfide bonds, which finally may immobilize more thiolated polymeric particles
in the mucus layer than the unmodified polymer [92]. TMC-cysteine nanoparticles also showed greater
permeability enhancement effect compared to unmodified TMC, which can be linked to the inhibition
of protein tyrosine phosphatase which facilitates opening of tight junctions [14]. It might also be due
to the greater mucoadhesion of TMC-cysteine than the native chitosan. Third possible reason is the
inhibition of protease activities on insulin via shielding of enzymatic cutting sites after formation of
self-assembled nanoparticles [92].
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4.3.2. Chitosan-N-Acetyl-Cysteine

Schmitz et al. [87] synthesized chitosan-N-acetyl-cysteine conjugate via covalent attachment of
N-acetyl-cysteine to chitosan using two different concentrations of EDAC as a mediator. They observed
that this modification resulted in 50-fold increase in the retention of chitosan compressed discs on
ex vivo porcine intestinal mucosa. The total work of adhesion required to detach the chitosan-N-
acetyl-cysteine discs from the intestinal mucosa was 8.3-fold greater than unmodified chitosan.
This may be due to the increase in the number of disulfide bonds between the polymers and the
cysteine-rich domains of mucosa. They also revealed that increasing the concentration of EDAC
resulted in products with greater amount of thiol groups. This is due to the activation of carboxylic
groups of N-acetyl-cysteine, which resulted in immobilization of more thiol groups on the polymer.
This eventually increased its mucoadhesive strength.

4.3.3. Chitosan-Thioglycolic Acid (Chitosan-TGA)

Chitosan-TGA has been synthesized by introducing TGA to chitosan using EDAC as a mediator.
The resulting thiolated chitosan showed 4.3-fold increase in the viscosity, which is desirable for mucosal
drug and gene delivery and scaffold materials in tissue engineering. This improvement in the viscosity
may be related to the formation of disulfide bonds within the polymeric matrix [85]. The viscosity of
this thiolated chitosan can be further improved by using different oxidizing agents including hydrogen
peroxide, sodium periodate, ammonium persulfate and sodium hypochlorite. These agents accelerated
the sol-gel transition to take place only within few min, while without them this transition requires
40 min. 25 nmol/L hydrogen peroxide has increased the dynamic viscosity of 1% chitosan-TGA
solution by up to 16,500-fold. This may be due to the formation of more inter- and intra-chain disulfide
bonds [93]. To assess the potential of chitosan-TGA for non-viral oral gene delivery, 100–200 nm
nanoparticles with zeta potential of 5–6 mV have been formed by complex coacervation of plasmid
DNA and the thiolated chitosan. These particles showed acceptable stability toward DNase and thus
resulted in a 5-fold increase in the rate of transfection [94] .

In another study, Barthelmes et al. [95] synthesized mucoadhesive nanoparticles based on
chitosan-TGA using ionic gelation with sodium tripolyphosphate (TPP) for intravesical drug delivery.
Two types of partially oxidized (different in their disulfide content, -SH groups oxidized to form -S–S-
bonds) chitosan-TGA-TPP nanoparticles were also synthesized by the addition of H2O2 solution (0.5%
v/v) to chitosan-TGA-TPP nanoparticles. Either fluorescein diacetate or trimethoprim were then loaded
into the nanoparticles. Then, using a flow through technique, the amount of fluorescein diacetate
adhered to the bladder mucosa was quantified using fluorescence spectrophotometry. It was found that
using chitosan-TGA-TPP nanoparticles, 14.2 ± 7.2% of fluorescein diacetate remained on the surface
of the mucosal tissues but in the case of unmodified chitosan-TPP nanoparticles, only 1.1 ± 0.1%
fluorescein diacetate remained after washing with simulated artificial urine for 3 h with a flow rate of
2 mL/min. This improvement in the mucoadhesion was due to the covalent bonds formed between
the thiol groups of the polymers and the cysteine-rich domains of the glycosaminoglycan layer of
the mucus which is composed of proteoglycans and glycoproteins as in the case of adhesion to the
intestinal mucosa [95,96]. To prove the concept, a quantitative analysis of free thiol groups of intestinal
and urinary bladder mucus was performed and revealed no significant difference between the thiol
contents of the two mucosal tissues. Interestingly, release study using artificial urine as a dissolution
media shown that covalently crosslinked chitosan-TGA-TPP nanoparticles resulted in a slower and
more controlled release of trimethoprim compared to ionically crosslinked chitosan-TGA-TPP and
unmodified chitosan-TPP nanoparticles. The nanoparticles with greater content of disulfide bonds
released the drug significantly slower than the nanoparticles with fewer disulfide bonds. The authors
suggested that covalent crosslinking resulted in harder nanoparticles due to the formation of disulfide
bridges within the matrix of the nanoparticles. This then increased the mechanical strength of the
nanoparticles and thus made the artificial urine diffuse slowly into the nanoparticles. Consequently
the dissolution of trimethoprim decreased and the nanoparticles released the drug slowly [95].
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4.3.4. Chitosan-4-Thiobutylamidine

Chitosan-4-thiobutylamidine (chitosan-TBA) is another type of thiolated chitosan with
mucoadhesive properties [97]. It remained on porcine small intestinal mucosa for 161 ± 7 h when
tested using rotating cylinder method. In addition, the total work of adhesion was 740 ± 147 µJ. It has
been reported that the mucoadhesive property of thiolated chitosans is pH dependent, and this point
should be considered in the design of thiolated chitosan-based mucosal drug delivery systems [97].

Langoth et al. [98] designed mucoadhesive buccal delivery system of pituitary adenylate
cyclase-activating polypeptide using chitosan-TBA as a promising treatment for type-2 diabetes
mellitus. The in vivo buccal administration through porcine buccal mucosa resulted in a continuous
rise in the plasma level of the enzyme over 6 h.

Dünnhaupt et al. [99] synthesized fluorescently-labelled nanoparticles of chitosan-TBA and
polyacrylic acid-cysteine conjugate using ionotropic gelation technique. For the mucoadhesion study,
fresh jejunum of rats was cut into 2 cm segments and filled with 0.1 mL nanoparticles. After fixation,
the mucosal tissues were examined by fluorescence microscopy. The penetration study was performed
using fresh “mucus-filled silicon tube” technique. It was found that nanoparticles of both modified
chitosan (Figure 9) and polyacrylic acid exhibit greater mucoadhesive strength than unmodified
nanoparticles. Chitosan particles showed 2-fold greater mucoadhesive property than polyacrylic acid
particles. On the contrary, the muco-penetration ability of unmodified nanoparticles was greater than
the thiolated nanoparticles.
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Figure 9. Fluorescent images of rat intestinal tissues after 2 h incubation with 100 µL (0.5% w/v)
chitosan (a) and chitosan-TBA (b) nanoparticles labelled with Alexa Fluor 488, (a1 and b1, 40×; a2 and
b2, 100×magnification). The scale bars = 100 µm. Reprinted from [99] with permission of Elsevier.
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The combination of chitosan-TBA and chitosan-Bowman-Birk inhibitor in the design of 2 mg
enteric coated microtablets showed a significant enhancement in the effect of oral salmon calcitonin
on the level of plasma calcium when tested in rats [100]. The derivatization of chitosan with enzyme
inhibitors will be discussed in a separate section.

4.3.5. Chitosan-Thioethylamidine

The use of 2-iminothiolane to synthesize thiolated chitosan resulted in a marked increase in
the mucoadhesion. However, the resultant thiolated chitosan lacks sufficient stability leading to
the reduction in the number of free thiol groups. One of the reasons for the instability could
be the formation of N-chitosanyl-substituted 2-iminothiolane structures, which happens after
modification of some amines using 2-iminothiolane. This intermediate product loses ammonia and
results in the formation of re-cyclized N-substituted 2-iminothiolanes.To avoid this side reaction,
Kafedjiiski et al. [88] synthesized thiolated chitosan using isopropyl-S-acetylthioacetimidate as a
thiolating agent and an alternative to 2-iminothiolane. In contrast to chitosan-TBA (higher than
unmodified chitosan) [101], the swelling property of chitosan-thioethylamidine was not significantly
different from unmodified chitosan. However, the mucoadhesion was significantly improved. Using
chitosan-thioethylamidine, the release of FITC-dextran was sustained over 3 h, which could be due
to the presence of disulfide bonds in the structure of chitosan, which can slow the diffusion of
FITC-dextran macromolecules down.

4.3.6. Chitosan-Glutathione

Several studies reported the use of glutathione for the synthesis of chitosan-glutathione
conjugates [89,91,102,103]. Due to its permeation-enhancing effect, redox potential and safe
toxicological profile, glutathione is a suitable thiolating agent for biomedical applications. Due to the
presence of thiol groups in the glycine part of glutathione, it has strong electron donating property,
acting as a reducing agent. Additionally, the stability of glutathione against cellular aminopeptidase
is provided by the presence of γ-peptidic bond between glutamic acid and cysteine. Also, its
conformational flexibility, makes glutathione a highly reactive ligand [89].

Similar to other thiolated chitosans, the synthetic approach is based on the formation of
amide bonds between glycine carboxylic acid groups of glutathione and amino groups of chitosan.
The reaction can be mediated by EDAC/NHS. The method was developed by Kafedjiiski et al. [89].
The resultant chitosan-glutathione exhibited acceptable cohesive properties and did not disintegrate
in physiological solution (0.1 M phosphate buffer solution pH 6.8) for 48 h. However, unmodified
chitosan was only stable for 9 h. Interestingly, both polymers showed the same swelling behavior,
whereas chitosan glutathione had greater mucoadhesive properties (expressed as the total work of
adhesion and tablets-intestinal detachment time) than unmodified chitosan. The apparent permeability
of rhodamine 123 using chitosan-glutathione and unmodified chitosan were 2.06 × 10−7, and
0.66 × 10−7 cm/s, respectively.

Jin et al. [104] demonstrated the application of chitosan-glutathione in the oral delivery
of thymopentin (a synthetic pentapeptide with immune-regulatory action). They synthesized
thymopentin-loaded poly(butyl cyanoacrylate) nanoparticles using emulsion polymerization
technique. The particles were subsequently coated with either chitosan or chitosan-glutathione
and orally administered to immunosuppressed rats. It was found that chitosan-glutathione-coated
nanoparticles were able to normalize the immune function of rats, which is probably due to the
enhanced mucoadhesive properties of chitosan-glutathione.

Chitosan-glutathione hydrogel was also found to be more effective in the reduction of oxidative
stress in neonatal rat cardiomyocytes than unmodified chitosan hydrogel. The action possibly related
to better cellular adhesion potential of chitosan-glutathione compared to unmodified chitosan as a
result of the availability of the biocompatible glutathione promoting the cells survival [91].
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4.3.7. Comparison of Chitosan, Trimethyl Chitosan and Thiolated Chitosan

In a comparative study, Mei et al. [105] investigated the mucoadhesion as well as the nasal
absorption enhancing effect of chitosan, thiolated chitosan and trimethyl chitosan. Chitosans
of different molecular weights were synthesized by depolymerization then the depolymerized
samples were either trimethylated as reported in [106] or thiolated by reacting with cysteine using
EDAC/NHS chemistry according to Bernkop-Schnürch and Steininger [107] with slight modification.
The mucoadhesion of chitosan and thiolated chitosan was evaluated and the detachment time of 5 mm
discs of the polymers from freshly excised porcine intestinal mucosa was evaluated. Discs of thiolated
chitosan with greater degree of substitution (152 µmol/g) detached in a significantly longer time (about
12 h) than unmodified chitosan. The bioavailability of 2,3,5,6-tetramethylpyrazine phosphate through
nasal route after its formulation with different chitosans was investigated. It was found that the use
of any type of chitosan (unmodified, thiolated and trimethyl chitosan) resulted in a significantly
improved absorption of 2,3,5,6-tetramethylpyrazine, however, no significant difference between
thiolated chitosans (two different degrees of substitution) with unmodified chitosan was observed.
The authors claimed that the permeation-enhancing effect is dose- and molecular weight-dependent
and 100 kDa resulted in maximal absorption enhancement. On the other hand, trimethyl chitosan
led to a significant enhancement in the nasal absorption of the drug. These results contradict
those studies reporting the absorption enhancing effect of thiolated chitosan through intestinal
mucosa. For example, Krauland et al. [101,108] demonstrated that chitosan-4-thiobulyamidine resulted
in an increase in the oral and nasal absorption of insulin compared to unmodified chitosan.
In Krauland et al. studies [101,108], the absorption enhancement could also be due to the inhibition of
protein tyrosinase and P-glycoprotein efflux pump in the mucosal membranes [101,109].

4.3.8. Pre-Activated (S-Protected) Thiolated Chitosans

Vulnerability of thiolated chitosans to oxidation can be considered as one of the major limitations
of their use as mucoadhesive polymers. Thiolated chitosans are generally stable in dry state. However,
in solutions, they undergo rapid oxidation especially in the presence of oxidants such as oxygen and
particularly at pH > 5 [86]. This, will not only lead to the formation of intra- and inter-molecular
disulfide bonds, but also results in the reduction of the free thiol groups necessary for the formation
of disulfide bridges with the cysteine-rich domains of the mucin. This will then lead to a significant
reduction in the mucoadhesive potential of thiolated chitosans under physiological conditions of the
gastrointestinal tract [86]. To prevent the unwanted oxidation of thiolated chitosans, pre-activated or
S-protected thiolated chitosans have been developed by Bernkop-Schnürch and co-workers.

Generally, pre-activated thiolated chitosan can be synthesized by two steps. Firstly, thiolated
chitosan is prepared using a thiolating agent and secondly thiol groups are protected by disulfide
bond formation using ligands with mercaptopyridine substructure including mercaptonicotinamide,
mercaptonicotinic acid and mercaptopyridine. Due to its toxicity profile mercaptopyridine is less
commonly used [25]. Despite improvement of mucoadhesive properties, S-protection can also enhance
the intestinal permeability of hydrophilic molecules such as FITC-dextran. In addition, S-protected
thiolated chitosans have shown less cellular toxicity than the unprotected chitosans [110].

Dünnhaupt et al. [111] synthesized S-protected thiolated chitosan using a two-steps approach
(Figure 10). First, thioglycolic acid was covalently attached to chitosan and resulted in the formation
of amide bonds between the amino groups of chitosan and the carboxylic groups of thioglycolic
acid. Secondly, aromatic ligand 6-mercaptonicotinamide (6-MNA) was synthesized by reacting
6-chloro-nicotinamide with thiourea, which was then oxidized using hydrogen peroxide to form
6, 6′-dithionicotinamide (6, 6′-DTNA). Both 6-MNA and 6, 6′-DTNA were then reacted with thiolated
chitosan to obtain S-protected thiolated chitosan. Tablets of unmodified, thiolated and S-protected
thiolated chitosans were prepared. Using rotating cylinder method, it was found that S-protected
thiolated chitosan with 660 µmol/g thiol groups remained attached to the intestinal mucosa for
90 h, whereas unprotected thiolated chitosan were only attached for 45 h. However, it seemed there
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was no significant difference between unprotected and S-protected thiolated chitosan with more
thiol groups (980 µmol/g). Unmodified chitosan detached after only 10 h. Rheological studies also
indicated that mixing S-protected thiolated chitosan with mucin resulted in a significant increase in the
apparent viscosity of the mixture compared to both unmodified and unprotected thiolated chitosan.
The authors believed that S-protected thiolated chitosan interacts more rapidly and quantitatively
with mucus by thiol-disulfide exchange reaction between the thiol groups of mucus-cysteine and
the pyridyl-thiol moiety of the S-protected thiolated chitosan. In the mucus, the amount of free thiol
groups (-SH) is approximately two times greater than their oxidized form (-S–S-) [95] and this is in
favor of thiol-disulfide exchange. Thus, more bonding between S-protected thiolated chitosan and the
mucus can be achieved compared to unprotected thiolated chitosan [111].
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In another study, Dünnhaupt et al. [112] demonstrated the application of S-protected chitosan-TGA
(chitosan-TGA-MNA) in the oral delivery of antide as tablets dosages forms. It was shown
that hardness of chitosan-TGA-MNA tablets was significantly increased due to introduction of
6-MNA ligand and the presence of disulfide bonds within the polymeric network. Chitosan tablets
swelled quickly and reached maximum within 2 h. However, chitosan-TGA tablets swelled slowly
and continuously with greater extent than the unmodified chitosan. The presence of disulfide
bonds might explain the enhanced water absorbing capacity of chitosan-TGA. On the other hand,
chitosan-TGA-MNA tablets swelled to a lesser extent (1.5-fold) than chitosan-TGA tablets, which could
be due to the presence of hydrophobic 6-MNA ligand. Additionally, chitosan-TGA-MNA resulted
in a constant sustained release of antide and after 8 h, only 65% released. However, the% of antide
released from chitosan-TGA and unmodified chitosan were 77 and 100%, respectively. The in vivo
study in male Sprague Dawley rats, however, indicated only a slightly higher plasma concentration of
antide, but not statistically significant (p > 0.05) using chitosan-TGA-MNA compared to chitosan-TGA.
The authors claimed that this compromise in the oral bioavailability of antide could be due to the
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enhanced cohesiveness and controlled release of chitosan-TGA-MNA tablets. These two properties are
essentially important in the design of mucoadhesive formulations as if the polymer is not cohesive
enough it might collapse and therefore the peptide might not be protected and rapidly released into
the lumen of the gastrointestinal tract and degraded and no longer contributes to the concentration
gradient [112].

4.3.9. Other Thiolated Chitosans

Thiolated methylated dimethylaminobenzyl chitosan has been synthesized by Hakimi et al. [113].
Although the authors claimed that the modified chitosan had better water-solubility profile and
potential for drug delivery, in their work, apart from cytotoxicity, they did not perform any studies
related to the application of this type of thiolated chitosan as a mucoadhesive polymer. Clearly, this
chitosan derivative will be of interest for evaluation of its mucoadhesive properties.

4.4. Acrylated Chitosan

The use of acrylate groups in the development of mucoadhesive materials was pioneered
by Davidovich-Pinhas and Bianco-Peled [114]. The mechanism of mucoadhesion is believed to
be due to Michael-type addition reaction between the acrylate vinyl groups of the polymers
and the sulfhydryl groups of mucus glycoproteins. The nature of this interaction was proved
by 1H-NMR study, where the intensity of the peaks related to the vinyl groups of polyethylene
glycol diacrylate hydrogels was decreased after their reactions with mucin dispersion [114]. Thus,
the presence of covalent interactions with mucus is a common feature of acrylated and thiolated
mucoadhesive materials [25,36,37,86,114–117]. The idea of acrylated chitosan synthesis was developed
by Ma et al. [118]. However, they did not demonstrate any application in the mucosal drug delivery.
This chitosan derivative is water-soluble, can be cross-linked under ultraviolet light using photoinitiator
2959 and has less antimicrobial activity compared to parent chitosan [118].

Shitrit and Bianco-Peled [119] synthesized acrylated chitosan by reacting chitosan solution
(1% w/v in 2% v/v acetic acid, molecular weight 207 kDa, degree of deacetylation 77.6%) with
poly(ethylene glycol) diacrylate (PEGDA) via Michael-type reaction (Figure 11). Two different
molecular weight PEGDA (0.7 and 10 kDa) were used. The acrylated chitosan was characterized using
1H-NMR spectroscopy and ninhydrin test. It was found that using smaller molecular weight (0.7 kDa
PEGDA) at chitosan/PEGDA ratio of 1:4 resulted in more acrylation (98%) than using higher molecular
weight PEGDA (10 kDa, 30%). The authors believed that this could be due the presence of greater
molar amount of acrylate groups leading to a more efficient reaction. However, using chitosan/PEGDA
1:2 molar ratio led to the formation of a product with a lower degree of acrylation (45%).

The mucoadhesion was evaluated using tensile strength and rotating cylinder method using
tablets of chitosan, thiolated and acrylated chitosan on porcine intestinal mucosa. The order of
detachment force was the following: chitosan-PEGAc (10 kDa) > thiolated chitosan > chitosan =
chitosan-PEGAc (0.7 kDa). Unexpectedly, the maximum detachment force of chitosan-PEGAc (0.7 kDa)
was not significantly different from chitosan tablets. Both chitosan-PEGAc (10 kDa) and thiolated
chitosan remained attached to the intestinal mucosa for more than 6 h, whereas chitosan-PEGAc
(0.7 kDa) detached after 1 min. Chitosan tablets detached after 1.1 ± 0.2 h. The authors claimed that
chitosan-PEGAc (0.7 kDa) has greater degree of acrylation than chitosan-PEGAc (10 kDa) and this
means higher grafting density of PEG, which could result in the steric hindrance and preventing
the covalent bonding with the cysteine-rich domain of mucus [119]. Similar trend with polyacrylic
acid was observed; 450 kDa showed a stronger interaction with porcine gastric mucin whereas 2 kDa
did not exert any effect [120]. Additionally, shorter PEG (smaller molecular weight) cannot deeply
penetrate the mucosal tissues and results in a lower mucoadhesive strength, since mucoadhesive
properties of polymers are proportional to the molecular weight [119]. Other studies reported that
an optimum molecular weight of polymers is required to achieve maximal mucoadhesion. Small
molecular weight polymers form weak gels and easily dissolve whereas high molecular weight



Polymers 2018, 10, 267 18 of 37

polymers do not readily hydrate, thus the free binding groups are not available to interact with the
mucus components. Therefore, in both cases, weak mucoadhesion can be observed [121].
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4.5. Half-Acetylated Chitosan

Half-acetylated chitosan is another type of chitosan derivatives, which can be prepared by reacting
chitosan with acetic anhydride. Several studies explored the solubility of half-acetylated chitosan
and its subsequent effect on the antimicrobial and mucoadhesive properties of chitosan [15,17,35,122].
Qin et al. [122] found that half-acetylated chitosan had no antimicrobial activity against Staphylococcus
aureus, Escherichia coli and Candida albicans. However, unmodified chitosan had antimicrobial effects
against these microorganisms. They claimed that chitosan can interact with the components of the
microorganism surfaces and thus be absorbed on their surfaces. Since the pH of bacterial and fungal
cells is around 7, unmodified chitosan precipitates and forms an impermeable layer around the cells.
This layer blocks the channels, which are essential for the cells survival. However, half-acetylated
chitosan fully dissolved at neutral pH, thus did not form an impermeable layer, and led to a better
survival of cells compared to unmodified chitosan.

Sogias et al. [17] demonstrated that half-acetylated chitosan (the degree of acetylation = 52 ± 4 mol %)
was soluble over a broad pH range and did not precipitate below pH 7.4. This improved solubility
profile of half-acetylated chitosan over unmodified chitosan was related to the reduced crystallinity
(caused by disruption of inter- and intra-molecular hydrogen bonds) upon N-acetylation [15,17].
In another study, Sogias et al. [15] found that, at pH 2, half-acetylated chitosan interacted with porcine
gastric mucin particles at a higher polymer/mucin ratio than unmodified chitosan, which was due
to the decrease in the number of free amino groups in half-acetylated chitosan. At this pH, the
amino groups undergone protonation and were responsible for the electrostatic interaction between
chitosan macromolecules and mucin. They also revealed that at pH 7, where unmodified chitosan
precipitates, half-acetylated chitosan was still able to interact with mucin particles. To explore the
mechanisms of mucoadhesion, the polymer-mucin interaction was studied in the presence of sodium
chloride (0.2 M), urea (8 M) and ethanol (10% v/v). These agents are known to disrupt the electrostatic
interaction, hydrogen bonding and hydrophobic effects, respectively. The results indicated that all
these forces were involved in the mucoadhesion of chitosan and half-acetylated chitosan. In case of
half-acetylated chitosan, at pH 7, the electrostatic interaction was the major contributing force in the
mucoadhesive interactions. This may be due to the higher negative charge density of mucin particles
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at pH 7 compared to pH 2 [15]. However, the mucoadhesive properties of unmodified chitosan at pH
7 were not evaluated, which could be due to its insolubility at this pH.

Sogias et al. [35] prepared microparticles containing ibuprofen and either chitosan or half-
acetylated chitosan by two different techniques; spray-drying and co-grinding. 65 mg tablets were
prepared from spray-dried chitosan and half-acetylated chitosan, spray-dried mixtures of chitosan or
half-acetylated chitosan with ibuprofen and co-ground mixtures of the polymers and the drug. It was
found that tablets of half-acetylated chitosan significantly enhanced ibuprofen release at pH 7. The force
of detachment between unmodified chitosan tablets and porcine gastric mucosa was decreased when
measured at very acidic (pH 1) and neutral (pH 7) media (Figure 12). However, the mucoadhesion
of half-acetylated chitosan tablets was only decreased at low pH and increased linearly up to pH 7.
Half-acetylated chitosan tablets were generally less mucoadhesive than chitosan tablets. This could be
due to the reduction of cationic charge density upon acetylation, which diminished the electrostatic
interaction with mucin [35]. Incorporation of ibuprofen in chitosans tablets resulted in a significant
drop of mucoadhesion (Figure 12).
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chitosan (HACHI) (�) tablets as a function of pH on porcine gastric mucosal tissues at 37 ± 0.1 ◦C.
Mean ± SD, n = 3. (2) Work of adhesion of tablets on porcine gastric mucosa at pH 7.0 and 37 ± 0.1 ◦C.
Chit.: chitosan, Ibu.: ibuprofen, SD: spray-dried, CG: co-ground. Mean± SD, n = 3. Reprinted from [35]
with permission of Elsevier.

4.6. Glycol Chitosan

Glycol chitosan is a hydrophilic chitosan derivative, which can be prepared by adding ethylene
glycol groups to chitosan backbone. It is soluble in water at any pHs [123,124]. It is commercially
available from Sigma-Aldrich.

Glycol chitosan has been used in the design of nanoparticles for the delivery of poorly water-
soluble drugs. Trapani et al. [124] prepared 6-coumarin-loaded glycol chitosan-TPP nanoparticles
using ionic gelation method. Different cyclodextrins were used to form an inclusion complex with this
dye. It was found that nanoparticles containing (2,6-di-O-methyl)-β-cyclodextrin could be internalized
by Caco2 cells, which could be due to the mucoadhesive nature of chitosan.

Glycol chitosan has been modified to prepare amphiphilic chitosan derivatives. Below, we will
discuss two examples of these amphiphilic glycol chitosan derivatives.
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4.6.1. Palmitoyl Glycol Chitosan

Palmitoyl glycol chitosan is a hydrophobically-modified glycol chitosan. Its use in drug delivery
started since the 1990s.The presence of both of hydrophilic and hydrophobic groups imparts it an
amphiphilic character [125,126]. It has ability to self-assemble into vesicles suitable for delivery of
water-soluble drugs such as bleomycin [126]. Its quaternized form (quaternary ammonium palmitoyl
glycol chitosan) can self-assemble into micelles with a high drug loading capacity. It also facilitated
transport of hydrophobic drugs including griseofulvin and propofol and hydrophilic drugs (but to
a lower degree) including ranitidine through biological barriers such as intestinal and blood brain
barriers, respectively, led to enhanced bioavailability [127,128]. It is conceivable that, the hydrophilic
groups (–OH and –NH2) of glycol chitosan located in the external shell of the micelles and the
hydrophobic groups in the cores. Thus, the mucoadhesive property of glycol chitosan should be well
maintained upon self-assembly as these groups are mainly responsible for the mucoadhesive nature of
chitosan and its derivatives [15,129].

The hydrophobicity is one of the important factors affecting the mucoadhesive character of
materials. Martin et al. [130] investigated this by synthesizing palmitoyl glycol chitosan with
various degrees of palmitoylation (a hydrophobic group). First, glycol chitosan was dissolved in
water before sodium bicarbonate and absolute ethanol were added. To this, ethanolic solution of
palmitoyl-N-hydroxysuccinimide was added and then the mixture was stirred for 72 h in the dark
(Figure 13). This was followed by dialysis and recovery of the product. The physically crosslinked
gels were prepared by freeze drying the products and evaluated for their bioadhesive strength by
measuring the force necessary to detach the gels from porcine buccal mucosa. It was found that
by increasing the hydrophobicity (represented by the degree of palmitoylation), the hydration and
erosion of the gels decreased. On the other hand, bioadhesion could be enhanced by increasing the
hydrophobicity. Although no comparison with chitosan has been shown, palmitoyl glycol chitosans
were found to be less bioadhesive than hydroxypropylmethyl cellulose/carbopol control. The most
hydrophobic palmitoyl glycol chitosan gel (20.31 ± 2.22 mol % palmitoylation) resulted in the slowest
controlled release of the model hydrophilic drug (FITC-dextran).
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Siew et al. [127] developed nanoparticles based on quaternary ammonium palmitoyl glycol
chitosan, which enhanced the oral absorption of both hydrophilic (ranitidine) and lipophilic drugs
(griseofulvin and cyclosporine A). The bioavailability enhancement was believed to be due to a
combination of increased drug dissolution rate (as a result of a great surface area of drug-loaded
nanoparticles) and the mucoadhesive nature of chitosan, which increased the intestinal residence time
of the nanoparticles, bringing them in close contact with the absorptive epithelial cells and thereby
reducing the absorption barrier of the mucosal membrane [127]. This is because the established
adhesion of the nanoparticles to the mucus layer provides some degree of penetration into the mucosal
membranes [2].
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4.6.2. Hexanoyl Glycol Chitosan

Cho et al. [131] synthesized hexanoyl glycol chitosan by N-acylation of glycol chitosan (Figure 14).
To do that, glycol chitosan was dissolved in water and then diluted with methanol. Then, various
amounts of hexanoic anhydride were added and the reaction mixture was continuously stirred for
24 h. The hexanoyl-glycol chitosan was precipitated by acetone and the product was recovered by
lyophilization after been dialyzed against water.
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Figure 14. Synthetic pathway to hexanoyl glycol chitosan [131].

Interestingly, hexanoyl glycol chitosan with 39.5 ± 0.4% degree of hexanoylation had a
thermosensitive gelling property as it underwent gelation at 37 ◦C. The in vitro release study showed
no significant difference between brimonidine-loaded hexanoyl glycol chitosan-based formulation and
the marketed eye drops (Alphagan P). However, the in vivo pre-ocular (inferior fornix of the eyes)
retention study in rabbits revealed that hexanoyl glycol chitosan enhanced the retention of rhodamine
in the pre-ocular tissues (Figure 15). The fluorescence signal from rhodamine was still strong after
60 min post administration, and became weak after 90 min. On the other hand, weak fluorescence
signal was observed after only 10 min (and become weaker after 60 min) when both PBS (negative
control) and unmodified glycol chitosan were used indicating their poor retention in pre-ocular tissues
(Figure 15). Additionally, the intra-ocular pressure was significantly dropped and the therapeutic
action was prolonged compared to unmodified glycol chitosan as well as conventional eye drops [131].
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Figure 15. Photograph of rabbit eyes showing the eyeball and the inferior fornix (a). The fluorescence
images of rabbit eyes at different time intervals after ocular administration of rhodamine-loaded
PBS (RD-PBS), glycol chitosan (RD-GC) and hexanoyl glycol chitosan with 39.5 ± 0.4% degree of
hexanoylation (RD-HGC 3). The eyeball and the inferior fornix (into which the formulations were
administered) were shown by the black and white arrows, respectively (b). Scale bars = 5 mm.
Reprinted from [131] with permission of Elsevier.
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Subsequently, Cho et al. [132] have further modified hexanoyl glycol chitosan by reacting it with
glycidyl methacrylate (Figure 16) to form methacrylated hexanoyl glycol chitosan, which demonstrated
a thermo-reversible sol–gel transition behavior in aqueous solutions. Moreover, the thermally-induced
hydrogels could be chemically crosslinked by photo-crosslinking under UV-radiation. Although no
studies, to our knowledge, reported the mucoadhesive potential of methacrylated hexanoyl glycol
chitosan, the presence of a methacrylated part within this polymer can potentially lead to a strong
interaction with the mucin because of the covalent bonding between methacrylate part of methacrylated
hexanoyl glycol chitosan and the thiol groups of the mucin components.
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4.7. Chitosan Conjugates

4.7.1. Chitosan-Enzyme Inhibitors

These systems have been developed to protect orally administered peptide-based drugs from
enzymatic degradation in the gastrointestinal lumen. Some mucoadhesive polymers including
carbomer could also act as weak enzyme inhibitors [133], however, chitosan lacks this property.
Examples of enzyme inhibitors include antipain, chymostatin, elastatinal and Bowman-Birk
inhibitor [134]. It has been shown that enzyme inhibitors are toxic to certain types of cells. They also
could induce pancreatic secretion of secretin and cholecystokinin in rats [135]. These characters could
limit the application of free enzyme inhibitors in the formulation of peptide-based drugs. However,
covalent attachment of enzyme inhibitors to mucoadhesive polymers such as chitosan could reduce
the unwanted effects as their absorption can be reduced. Bernkop-Schnürch et al. [13] synthesized
chitosan-antipain conjugate. The synthetic approach based on the formation of amide bond between
carboxylic acid groups of enzyme inhibitors and the primary amino groups of chitosan which was
mediated with EDAC and sulfo-N-hydroxysuccinimide. Chitosan-antipain conjugate not only showed
mucoadhesive properties similar to unmodified chitosan, it also inhibited the action of trypsin. Tablets
containing 5% chitosan conjugate protected insulin from trypsin inactivating effect. A sustained insulin
release for 6 h was also achieved.

4.7.2. Chitosan-Complexing Agent

Ethylenediaminetetraacetic acid (EDTA) is a potent chelating agent and has US FDA approval for
the treatment of heavy metal poisoning since 1950s [136]. Removal of ions has been shown to enhance
the permeation of antiviral drugs such as dolutegravir across Caco2 cells monolayer and rat intestinal
mucosa ex vivo [137]. EDTA is also able to decrease pre-systemic metabolism of peptide-based drugs
by inhibiting brush border membrane bound enzymes by their deprivation of ions such as Zn2+ in
the mucous membrane [134,138]. However, the rapid biodistribution of EDTA limits this application.
Thus, chitosan-based EDTA system has been developed which has mucoadhesive properties on one
side and metal chelating ability on the other side [138,139].
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Compared to unmodified chitosan, chitosan-EDTA tablets showed better retention on porcine
intestinal mucosa. The mucoadhesive strength decreased with the reduction of the % of EDTA attached
to chitosan. It also inhibited Zn- and Co-dependent proteases including carboxypeptidase A and
aminopeptidase N. This is because chitosan-EDTA conjugate strongly bound to Zn and Co. [140].

S-protected thiolated chitosan-EDTA has also been synthesized to combine the advantages of
EDTA, thiolation and pre-activation or protection of thiol groups. The synthetic pathway is shown in
Figure 17 [138]. The multifunctional thiolated chitosan exhibited 5.6- and 3.6-fold longer residence time
on porcine intestinal mucosa compared to chitosan-EDTA and chitosan-EDTA-cysteine, respectively
(Figure 18).
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Figure 18. Mucoadhesion time of mini-tablets containing 30 mg of Ch-EDTA, Ch-EDTA-cys
or Ch-EDTA-cys-2MNA studied by rotating cylinder method using porcine intestinal mucosa.
Ch: chitosan, cys: cysteine, 2MNA: 2-mercaptonicotinamide. (Mean ± SD, n = 5, * denotes statistical
significant difference at p < 0.05). Reprinted from [138] with permission of Elsevier.

4.7.3. Chitosan-EDTA-Enzyme Inhibitors

By combining enzyme inhibitors and complexing agents coupled with chitosan, the degradation of
peptide-based drugs by the gut luminal enzymes could be significantly minimized [139]. Additionally,
as EDTA could bind to ions such as Zn2+ and Ca2+, the concentration of free forms of these ions can be
reduced. This decreases the formation of non-absorbable complexes between some drugs and these
ions leading to enhanced drug permeation [136,137]. Thus, chitosan-EDTA-serine protease inhibitors
were synthesized using a two-step approach. First, to form chitosan-serine protease inhibitors,
covalent attachment of antipain, chymostatin and elastatinal to chitosan was performed. Second,
chitosan-enzyme inhibitors were bound to EDTA. Tensile study using porcine intestinal mucosa
demonstrated that the mucoadhesive strength of the chitosan-EDTA-serine inhibitor was lower than
both chitosan-EDTA and chitosan. The reduction of the mucoadhesion of chitosan-EDTA-serine
protease inhibitors could be due to the substitution of the free amino groups of chitosan or
chitosan-EDTA upon covalent attachment to the enzyme inhibitors [139].

4.8. Chitosan-Catechol (Chi-C)

Catechol is a naturally occurring compound. It is an essential component of L-3,4-dihydroxyphenylalanine
(L-DOPA), which is an amino acid secreted by certain marine mussels (e.g., Mytilus edulis), which
have ability to adhere to various substrates under wet conditions [141]. This adhesive property
is mainly linked to the ability of catechol to form covalent and non-covalent bonds to different
organic, inorganic, and metallic surfaces [142,143]. Generally, chitosan-catechol can be synthesized
by chemical, electrochemical and enzymatic methods. The chemical method includes three main
approaches: amide bond formation using carbodiimide chemistry (Figure 19), reductive amination
using aldehyde-terminated catechol and reducing agents such as NaCNBH3 or NaBH4, and formation
of catechol-amine adducts using oxidizing agents such as NaIO4 [141,144].

Inspired by mussel adhesion to surfaces, Kim et al. [141] synthesized chitosan-catechol conjugate
by reacting chitosan with 3,4-dihydroxy hydrocinnamic acid mediated with EDAC (Figure 19).
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Mucoadhesion was evaluated in vitro using mucin-particle interaction, turbidimetry, surface plasmon
resonance (SPR) spectroscopy and rheological characterization as well as in vivo fluorescence imaging
technique and fluorescence measurement in various organs of mice. Chitosan-catechol conjugate
showed superior mucoadhesion than both unmodified chitosan and polyacrylic acid. The in vivo study
explored the difference in the retention of different polymers in different body sites. No fluorescence
was detected in organs lacking mucosal tissues including liver, spleen, and kidney (Figure 20).
However, at 3 h post-oral administration, strong fluorescence signal from chitosan-catechol conjugate in
intestinal tissues was observed (Figure 20). This could be due to the formation of strong covalent bonds
via Michael-type addition reaction upon the reaction of oxidized form of catechol (quinone) and amine
or thiol functionalities of mucins or Schiff base formation reaction [141]. The electrostatic attractive
interaction between the positively charged groups of chitosan and negatively charged carboxyl and
sulfate groups of mucin could lead to an initial contact stage and the adsorption of chitosan-catechol
macromolecules on the mucosal surfaces. This was then followed by an established consolidation
stage via the covalent interaction [121,141]. Unmodified chitosan and polyacrylic acid showed poor
fluorescence signal. The retention of chitosan-catechol conjugate decreased significantly in both
stomach and esophagus. The authors claimed that chitosan-catechol conjugate-mucin interaction was
stronger when the pH of mucin solution was 7 compared to pH 2 [141]. This might explain better
retention in small intestine, where pH is near neutral compared to poor retention in stomach (highly
acidic) and esophagus (slightly acidic, pH 4–6) [141]. The oxidation of catechol to quinone in alkaline
environment is more likely than in acidic environment, which could provide additional adhesive
interactions [141,142,145]. On the other hand, polyacrylic acid showed slightly greater mucoadhesion
to esophagus than stomach and intestine (Figure 20C). The difference in the pH of these organs
might explain this observation as it may affect the structures of both polyacrylic acid and the mucus
layer resulting in a different nature and extent of mucoadhesive interactions at different pHs [146].
Some studies reported that the mucoadhesive nature of polyacrylic acid may be due to its ability to
form hydrogen bonds with the mucus components [120,141,146,147], which is strongest at slightly
acidic pHs, depending on the type of the polymer [147,148]. However, Kim et al. [141] suggested
further studies to investigate the organ-specific mucoadhesive properties of chitosan, chitosan-catechol
and polyacrylic acid. Chitosan-catechol conjugate also enhanced the oral bioavailability of insulin and
Cmax reached after 2 h compared to unmodified chitosan which was 30 min (Figure 20D).
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penetration enhancing properties of various chitosans including 5-methyl pyrrolidinone chitosan, 
low molecular weight chitosan, a partially re-acetylated chitosan and chitosan·HCl using buccal or 
submaxillary bovine mucin dispersion, vaginal mucosa or porcine gastric mucin dispersion. It was 
found that different chitosans behaved differently in different substrates. In submaxillary mucin 
dispersion, chitosan·HCl was the most mucoadhesive. However, 5-methyl pyrrolidinone chitosan 
showed the greatest mucoadhesion among other polymers in all other studied substrates and 
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5-methyl pyrrolidinone, which has been demonstrated in other studies [154,155]. 

Figure 20. Chitosan-fluorescein isothiocyanate (Chi-FITC), polyacrylic acid-fluorescein-5-
thiosemicarbazide (PAA-FTSC) and chitosan-catechol-fluorescein isothiocyanate (Chi-C-FITC) were
orally administered to BALB/c mice and the animals were euthanized after 3 or 10 h. (A) The extracted
organs were imaged using in vivo imaging system. (B) The relative fluorescence intensity of Chi-FITC,
PAA-FTSC and Chi-C-FITC in the gastrointestinal tract (esophagus, stomach and intestine) at 10 h
after administration. (C) The fluorescence in the liver, spleen, kidneys, esophagus, stomach, and
small/large intestine at 10 h after administration are shown (mean ± SD, n = 3 mice/time point).
(* denotes statistical significant difference at p < 0.05, ** indicates p < 0.005). (D) The human (h)-insulin
(closed triangle), h-insulin/chitosan (closed circle) and h-insulin/chitosan-catechol (open circle) were
orally administered to Wistar rats and blood insulin concentration was measured using enzyme-linked
immunosorbent assay (ELISA) (n = 4 rats/time point). Reprinted from [141] with permission of Elsevier.

4.9. Methyl Pyrrolidinone Chitosan

Methyl pyrrolidinone chitosan can be synthesized by reacting chitosan with levulinic acid
(Figure 21) [149,150]. Specific experimental conditions including pH of the reaction mixture,
type and the rate of addition of reducing agents (NaCNBH3 or NaBH4), molar ratio of levulinic
acid/chitosan/reducing agents are required to obtain methyl pyrrolidinone chitosan and not
N-carboxybutylchitosan derivatives [151,152]. Sandri et al. [153] studied the mucoadhesive and
penetration enhancing properties of various chitosans including 5-methyl pyrrolidinone chitosan,
low molecular weight chitosan, a partially re-acetylated chitosan and chitosan HCl using buccal or
submaxillary bovine mucin dispersion, vaginal mucosa or porcine gastric mucin dispersion. It was
found that different chitosans behaved differently in different substrates. In submaxillary mucin
dispersion, chitosan·HCl was the most mucoadhesive. However, 5-methyl pyrrolidinone chitosan
showed the greatest mucoadhesion among other polymers in all other studied substrates and provided
the greatest permeation of acyclovir through porcine cheek mucosa and deepest penetration into the
vaginal mucosa. This could be due to the penetration enhancing effect of 5-methyl pyrrolidinone,
which has been demonstrated in other studies [154,155].
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4.10. Cyclodextrin-Chitosan

Cyclodextrins can enhance solubility and dissolution of poorly water-soluble drugs by forming
inclusion complexes. In 2001, the idea of grafting cyclodextrin to chitosan was adopted by Auzély-Velty
and Rinaudo [156], who used a reductive amination approach, where a solution of chitosan in acetic
acid/methanol was reacted with aldehyde-containing cyclodextrin derivative in the presence of sodium
cyanoborohydride (NaCNBH3). The reaction was mediated with EDAC. The inclusion ability of the
grafted-cyclodextrin was studied using NMR spectroscopy and found that it could form inclusion
complexes with two model compounds tert-butylbenzoic acid and (+)-catechin.

In 2006, Venter et al. [157] studied the mucoadhesion of this cyclodextrin-chitosan derivative by
tensile separation test (microbalance method) using partially purified porcine gastric mucin type III
(Sigma, UK) as a substrate. Figure 22 shows the experimental set-up for the mucoadhesion study.
Briefly, the aluminum plates of the apparatus were coated with the polymer solution (1% w/v) and
left to dry until polymeric films formed. Mucin solution (30% w/v) was prepared and placed in a
water bath (25 ◦C). The polymer-coated plate was lowered to contact with the mucin solution for
2 min. Then, the maximum detachment force to separate the polymeric films from the mucin solution
was measured using a computerized system. It was found that upon derivatization, chitosan lost its
mucoadhesive properties by 13.5%, but, it was 12% stronger than pectin.

In another study, Chaleawlert-umpon et al. [158] synthesized citrated cyclodextrin-g-chitosan.
In this study, citric acid was used to facilitate cyclodextrin mobility. Glycidyl trimethylammonium
chloride was also used to quaternize chitosan. The mucoadhesion study using mucin-particle
interaction method and SPR revealed that combination of quaternization and citrate modification led
to a significant enhancement in the mucoadhesive interactions. This could be due to an increase in the
cationic charge of chitosan as well as hydrogen bonding between carboxyl and hydroxyl groups of the
spacer and the mucus components.
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4.11. Oleoyl-Quaternised Chitosan

Yostawonkul et al. [159] developed a nanostructure lipid carrier for the delivery of lipophilic
drug molecules using high-pressure homogenization technique. They found coating of these
carriers with oleoyl-quaternised chitosan enhanced carcinoma Caco-2 cellular uptake of the model
drug (alpha-mangostin). This enhancement could be due to the mucoadhesive properties of
oleoyl-quaternised chitosan, which was evaluated by mucin-particle interaction method. However,
cytotoxicity of the carriers was also increased and thus the authors suggested careful optimization of
the drug loading to target cancer cells for chemotherapy.

5. Comparison of Different Chitosan Derivatives

Table 1 illustrates the advantages and disadvantages of different chitosan-based systems reported
in the literature together with the drug model, administration routes and mucus substrates types that
were used to evaluate them.

Table 1. A summary of chitosan derivatives properties with examples of drug candidates used in the
mucoadhesive drug delivery evaluation.

Chitosan
Derivatives Advantages Disadvantages Drug

Route of
Administration/
Substrate

References

Trimethyl chitosan

Soluble at broad range of
pHs (2–12), strong
mucoadhesion; decreased
TEER; increased paracellular
permeability of basic or
neutral macromolecules

Strong aggregation with
anionic macromolecules
such as heparin

Buserelin,
ropinirole·HCl

Oral, small intestine,
cattle nasal mucosa [52,160,161]

N-carboxymethyl
chitosan

Decreased TEER; increased
paracellular permeability of
anionic macromolecules

Insoluble at pH 3–7
(depending on the
degree of substitution)
due to its
polyampholytic
character

Low molecular
weight heparin;
Ofloxacin

Oral, rat small
intestine; Ocular,
rabbit eyes, in vivo

[73,76,82]

Chitosan-cysteine

Same mucoadhesion as
unmodified chitosan,
improved cohesion compared
to unmodified chitosan,
permeation enhancing effect

Susceptible to premature
oxidation, undesirable
side reactions led to the
formation of
(chitosan-cysteine-cysteine)n
side chains

- Oral, porcine
intestinal mucosa [25,84]

Chitosan-N-
acetylcysteine

50-fold longer retention time
than unmodified chitosan,
biodegradability as indicated
by the reduction of its solution
viscosity after addition of hen
white egg

Susceptible to
premature oxidation -

Oral, flat faced-discs,
porcine
intestinal mucosa

[87]

Chitosan-TGA

Controlled drug release,
longer disintegration time (up
to 100-fold) and 26-fold longer
mucoadhesion time against
unmodified chitosan

Need of mediator such
as EDAC Clotrimazole

Vaginal, tablets,
bovine
vaginal mucosa

[162]

Chitosan-TBA

Strong mucoadhesion,
permeation enhancing effect,
controlled release, no need
for mediator

Prone to oxidation. In
addition, unintended
cyclisation side reactions

Insulin,
cefadroxil

Oral, tablets, porcine
and rat
intestinal mucosa

[108,163]

Chitosan-
thioethylamidine

Much quicker synthetic
reaction rate than
chitosan-TBA (1.5 h vs. 24 h),
8.9-fold longer mucosal
detachment time than
unmodified chitosan,
controlled release, no
cyclisation side reactions as in
chitosan-TBA

Stability issues FITC-dextran Oral, tablets, porcine
intestinal mucosa [88]
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Table 1. Cont.

Chitosan
Derivatives Advantages Disadvantages Drug

Route of
Administration/
Substrate

References

Chitosan-
glutathione

Improved stability compared
to unmodified chitosan,
enhanced mucoadhesion
(9.9-fold increased adhesion
force and 55-fold longer
adhesion time), 4.9-fold higher
permeation-enhancing effect
against unmodified chitosan,
used as oxidative
stress suppressant

Stability issues Thymopentin

Oral, tablets, in vitro
porcine rat intestinal
mucosa; Oral
nanoparticles,
in vivo rats;
Injectable hydrogels

[89,91,104]

Pre-activated
(S-protected)
thiolated chitosan

Improved stability and
mucoadhesion compared to
unmodified chitosan and
unprotected thiolated chitosan

2-fold less swelling than
unmodified chitosan

Leuprolide;
Antide

Oral, tablets, porcine
intestinal mucosa
Oral, rat
intestinal mucosa

[111,112]

Acrylated chitosan Strong mucoadhesion,
water-soluble

Use of low molecular
weight PEGDA results in
a weaker mucoadhesion

- Oral, porcine
intestinal mucosa [119]

Half-acetylated
chitosan

Better solubility at higher
pHs (up to 7.4) compared to
unmodified chitosan,
sustained drug release

Less mucoadhesive
compared to
unmodified chitosan

Ibuprofen Oral, porcine
gastric mucosa [35]

Palmitoyl
glycol chitosan

Amphiphilic property,
diminished erosion and slow
hydration led to controlled
release, control bioadhesive
strength by changing the
degree of palmitoylation

Potential problems with
reproducibility with the
degrees of substitution
related to insolubility of
the final product

FITC-dextran
Buccal/disc shaped
gels, porcine
buccal mucosa

[130]

Hexanoyl
glycol chitosan

In situ gelling property,
in vivo ocular retention,
longer duration of action

- Rhodamine,
brimonidine

Ocular, rabbit,
in vivo ocular tissues [131]

Chitosan-enzyme
inhibitors

Protects drugs from enzymatic
degradation. Controlled
antipain release over 6 h,
mucoadhesive properties
preserved

Potential stability issues Insulin
Oral, flat-faced discs,
porcine
intestinal mucosa

[13]

Chitosan-EDTA

Better mucoadhesion than
unmodified chitosan
Inhibits Zn and Co-dependent
proteases including
carboxypeptidase A and
aminopeptidase N

No Ca-dependent serine
proteases inhibition -

Oral, flat-faced discs,
porcine
intestinal mucosa

[140]

Chitosan-enzyme
inhibitors-EDTA

Strong inhibitory action
against serine proteases,
Zn-dependent exopeptidases
including carboxypeptidase A
and B, aminopeptidase N

Less mucoadhesive than
unmodified chitosan and
chitosan-EDTA

-
Oral, flat-faced discs,
porcine
intestinal mucosa

[139]

Chitosan-catechol
conjugate

Strong mucoadhesion, higher
solubility at neutral pH,
sustained drug release,
improved therapeutic effect
in vivo compared to
unmodified chitosan

Poor mucoadhesion in
acidic environment,
optimum degree of
substitution (7.2%) is
required to achieve
water-soluble product
and formation of large
gel-like aggregates has
been observed for
greater degree of
substitution (12.7%)

Lidocaine;
Sulfasalazine

Oral, mice
gastrointestinal tract,
porcine gastric
mucin type II; Buccal,
hydrogels, porcine
and rabbit buccal
mucosa; Rectal,
hydrogels, mice
rectal mucosa in vivo

[141,143,
164,165]

Methyl
pyrrolidinone
chitosan

Greater mucoadhesion and
penetration enhancing effect
than unmodified chitosan

- Acyclovir

Buccal and vaginal,
porcine cheek or
submaxillary bovine
mucin, vaginal
mucosa, or porcine
gastric mucin

[153]

Chitosan-
cyclodextrin

Inclusion ability, sustained
release

Weaker mucoadhesion
than the parent chitosan - Porcine

gastric mucin [156,157]
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6. Conclusions

In this review, general methods of synthesis of potential mucoadhesive chitosan derivatives
have been highlighted. Some properties of chitosan and chitosan derivatives have been
discussed. These include solubility profile, stability, mucoadhesive and permeation enhancing effects.
The mucoadhesive properties of the derivatives have been particularly considered. It was shown
that the mucoadhesive properties of some derivatives have been significantly increased compared to
unmodified chitosan. In the majority of cases, this resulted in an enhancement in the bioavailability
and a significant improvement of the therapeutic efficacy of several candidate drugs compared to
unmodified chitosan. In some others, the mucoadhesive character either did not change or slightly
decreased. This however, was compensated with an improvement of other important chitosan
properties including solubility in physiological pH and cohesiveness, which are crucial parameters
in mucoadhesion. Therefore, improvement in the properties of chitosan derivatives discussed in
this review clearly demonstrate that its chemical modification could potentially lead to further
advances in transmucosal drug delivery. However, chemical modification of chitosan has limitations.
These include low reproducibility, especially with hydrophobically-modified chitosans, poor solubility
of chitosan in organic solvents used for the synthesis and changes with the degree of acetylation during
chemical modification.
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