technische universität dortmund Biochemical and Chemical Engineering

Crystallization kinetics in amorphous solid dispersions can be quantified by water sorption measurements

Gabriele Sadowski, Christian Luebbert

TU Dortmund University, Laboratory of Thermodynamics, Emil-Figge-Str. 70, 44227 Dortmund, Germany, Phone: +49 (231) 755-2635, Fax: +49 (231) 755-2572, gabriele.sadowski@tu-dortmund.de

Introduction

- Amorphous solid dispersions (ASDs) increase solubility and dissolution rate of poorly water-soluble active pharmaceutical ingredients (APIs)
- Amorphous API dissolved in a suitable polymer
- Long-term stability tests imposed by regulatory authorities (FDA) for newly developed ASDs at defined temperature and relative humidity (RH)
- Most marketed ASDs might crystallize during storage
- Information on crystallization kinetics required to predict shelf life of metastable ASDs
- Investigating the effect of relative humidity (RH) and API loading on crystallization velocity

Preparing ASDs

- spray drying
- API: Nifedipine (NIF)
- Polymer: poly (vinyl acetate) (PVAC)

Water sorption

Magnetic suspension balance

Thermodynamic predictions | Crystal content using PC-SAFT^[1]

- Model for residual Helmholtz energy a^{res}
- Five pure-component parameters
- Molecules considered as segmented chains
- Used for predicting mutual impact: Water sorption in ASDs and NIF crystallization [2]

Water content in an ASD depends on the degree of crystallinity and vice versa^[2]

Sorption measurements

water 0.01 0.00 60 80 time[hours]

Fig. 1: Experimental time-dependent water sorption of NIF/PVAC formulations with different NIF contents stored at 40°C/75% RH.

Thermodynamic prediction

Fig. 2: PC-SAFT predicted water sorption in amorphous (blue) and crystallized (orange) NIF/PVAC ASDs stored at 40 °C / 75% RH. Stable states are indicated by thick lines and metastable states by dash-dotted lines. The first and last value of the sorption measurement (Fig. 1) is indicated by circles (amorphous) and stars (crystallized ASD).

- Quantitative agreement of the PC-SAFT predicted water sorption in amorphous and crystallized NIF/PVAC ASDs and the

Crystallization kinetics

Fig. 3: Amount of NIF crystals in the ASD calculated using PC-SAFT water sorption prediction, the water sorption measurements and a mass balance.

Shelf life estimations

Fig. 4: Avrami-modeled crystallization kinetics of a NIF/PVAC ASD with w_{NIF} = 0.80 stored at 40 °C/75% RH. Light-gray symbols are crystallization data points (Fig. 3) and the red line is the resulting Avrami modeling.

- Avrami-Equation^[3] used for
 - modeling Avrami constants determined
 - Estimating crystallization velocity at other storage conditions and API loadings

- Storage at constant conditions (temperature and RH)
- Decrease of water sorption over time
- Initially amorphous samples confirmed to be crystalline after storage via X-ray diffraction

Mutual impact of water sorption/ crystallization^[2] considered

measurements

Amount of crystals estimated by coupling Sorption measurements (Fig. 1)

- PC-SAFT prediction (Fig. 2)
- Mass balance
- Crystal content increases sigmoidally from zero to the final equilibrium value

Conclusion

- Crystallization kinetics was investigated via water sorption measurements
- Degree of crystallinity obtained by coupling with sorption predictions and mass balance
- Calibration-free and easy method to estimate amount of crystals as function of time

Crystallization promoted by

- High API content in ASD
- High storage RH
 - High storage temperature

